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Abstract

A computer-aided diagnosis method is reported that al-

lows to objectively identify subjects with connective tis-

sue disorders from sixteen-phase 4D (3D+time) aortic MR

images. Our automated segmentation method combines

level-set and optimal surface segmentation algorithms so

that the final aortic surfaces in all 16 cardiac phases are

determined in a single optimization process. The result-

ing aortic lumen surface is registered with an aortic model

followed by calculation of modal indices of aortic shape

and motion. The modal indices reflect the differences of

any individual aortic shape and motion from an average

aortic behavior. Support Vector Machine (SVM) classifier

is used for classification of normal and connective disease

disorder subjects.

4D MR image data sets acquired from 30 normal and

connective tissue disorder subjects were used to evalu-

ate the performance of our method. The automated 4D

segmentation result produced accurate aortic surfaces in

all 16 cardiac phases, covering the aorta from the left-

ventricular outflow tract to the diaphragm, yielding sub-

voxel accuracy. The computer aided diagnosis method dis-

tinguished between normal and connective tissue disorder

subjects with a classification correctness of 96.7 %.

1. Introduction

Aortic aneurysms and dissections are the 15th leading

cause of death in the US, representing 0.7 % of all deaths

in 2004 [1]. Subjects with certain congenital connective

tissue disorders, such as Marfan’s Syndrome and Familial

Thoracic Aortic Aneurysm Syndrome are at increased risk

for development of aortic aneurysm and dissection. There-

fore, early diagnosis of connective tissue disorders is in-

creasingly important.

Many aortic segmentation techniques were developed

in 3D using computed tomography (CT) and MR images.

Rueckert [2] used Geometric Deformable Models (GDM)

to track the ascending and descending aorta. Behrens [3]

obtained a coarse segmentation using Randomized Hough

Transform (RHT). Bruijne [4] introduced an Adapting Ac-

tive Shape Model (ASM) for tubular structure segmenta-

tion. Subasic [5] utilized a level-set algorithm for segmen-

tation of abdominal aortic aneurysms.

Several authors have proposed techniques for tracking

the cardiac movement in 3D+time cardiac images. Bar-

dinet [6] presented an algorithm for tracking surfaces in

3D+time cardiac images based on a parametric model.

Chandrashekara [7] built a statistical model derived from

the motion fields in the hearts of several healthy volunteers

to track the movement of the myocardium. Dimitrios [8]

constructed a 3D+time statistical atlas to describe the car-

diac anatomy and how the cardiac anatomy changes during

the cardiac cycle. McInerney [9] built a dynamic finite el-

ement surface model for segmentation. Montagnat [10]

presented a 3D+time cardiac segmentation by introduc-

ing time-dependent constraints to the deformable surface

framework.

2. Methods

The reported CAD method consists of two main stages

– aortic segmentation and connective tissue disorder di-

agnosis. Surface segmentation of the aortic lumen is ob-

tained with an automatic 4D segmentation method. Next,

a quantitative method to detect the differences of the aortic

4D function between normal and tissue disorder patients

is employed to provide quantitative descriptors used in a

disease classification step.

2.1. Segmentation

A N phases 4D (spatial-temporal) image I can be

viewed as a discrete set of N volumetric images defined

at N temporal instants {It(x, y, z)}t∈[0,N−1]. The 4D

aortic surface can be viewed as a sequence of surfaces

{St}t∈[0,N−1]. Let {appSt}t∈[0,N−1] be a set of approx-

imate surfaces for the 4D image I . During the segmenta-

tion stage, the 4D segmentation algorithm consists of the

following steps:
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• Aortic surface presegmentation: A 4D fast marching

level set method simultaneously yields approximate 4D

aortic surfaces {appSt}t∈[0,N−1].

• Centerline extraction: Aortic centerline is determined

from each approximate surface by skeletonization.

• Accurate aortic surface segmentation: Accurate 4D aor-

tic surface {St}t∈[0,N−1] is obtained simultaneously with

the application of a novel 4D optimal border detection al-

gorithm [11].

2.2. Disease detection

The disease detection method is directly based on the

analysis of the 4D segmentation result. First, a Point

Distribution Model (PDM) is built representing the aortic

shape and its motion during the cardiac cycle. Then, the

modal indices of the PDM are used as input to a Support

Vector Machine (SVM) classifier.

2.2.1. Point distribution models

Building the PDM consists of two stages: 1) Automatic

generation of aortic landmarks representing the segmented

aorta in 4D. 2) Capturing the shape variation by perform-

ing principal component analysis (PCA) on the 4D shape

vectors of the aorta.

2.2.2. Discrimination model

With each 4D aortic instance represented by the princi-

pal components describing the observed shape and motion

variations, an efficient classification algorithm was devel-

oped for pattern recognition using support vector machines

(SVM) [12, 13]. The classifier is used to classify 4D aortic

instances into classes of normal and connective tissue dis-

order subjects. Given M input training samples x ∈ ℜn

with class labels y ∈ {−1, 1}, the SVM maps sample

x into a high-dimensional space using a kernel function

K(x, xi) and constructs an optimal hyperplane separating

the 2 classes in this space. The optimal hyperplane is iden-

tified as such a hyperplane which maximizes its distance

from the training samples (maximal margin in the high

dimensional space). The decision function given by the

SVM is of the form

f(x) = sign

(

M
∑

i=1

αiyiK(x, xi) + b

)

. (1)

Here, α = {α1, α2, ...αn} is determined by optimizing the

quadratic programming problem

Min
α

1
2

M
∑

i=1

M
∑

j=1

αiαjyiyjK(xi, xj) −
M
∑

i=1

αi

subject to
M
∑

i=1

yiαi = 0, 0 ≤ αi ≤ P, i = 1, ..., l

(2)

where P is a predefined parameter controlling the amount

of admissible errors.

3. Results

The algorithm was evaluated in a set of 30 MR im-

age sequences acquired from 30 subjects (20 normal, 10

diseased). Each sequence was composed of 16-25 car-

diac phases covering one cardiac cycle. For each subject,

both the candy cane view and left ventricular outflow tract

(LVOT) view are captured with voxel sizes ranging from

1.5×1.5×3.0 mm3 to 2.0×2.0×6.0 mm3. The diseased

subjects were selected due to their family history of con-

nective tissue disorder. Yet, all the diseased subjects had

“normal looking” aortic MR exam with no presence of a

developed aortic aneurysm.

To obtain 4D image data that would have the same num-

ber of cardiac phases for all subjects and consisted of iso-

metric voxels, the number of phases was normalized to 16

and the LVOT and candy-cane view image data were reg-

istered using a mutual information registration algorithm

and interpolated using B-splines. For some images, the

aortic information that is not present in the candy can view

is available in the LVOT view. Fig. 1 shows the image data

after the registration.

To assess the accuracy of the automated 4D segmenta-

tion, aortic luminal surfaces were compared with the ex-

pert traced independent standard. The independent stan-

dard was defined by manual tracing in 5 randomly selected

MR slices in each of 21 subjects (7 patients and 14 normal

subjects, total of 105 manually traced slices). Surface po-

sitioning errors were defined as the shortest distances be-

tween the manually traced and computer-determined sur-

faces in the 4D aortic images. Signed and unsigned surface

positioning errors are expressed as mean±standard devia-

tion in voxels and millimeters.

To assess the diagnostic performance of the aortic shape

and motion PCA indices derived from 16-phase 4D seg-

mentation, six most significant principal components of

shape and motion were used for classification. Expert-

defined disease status derived from the clinical records

formed the binary prediction output (normal/abnormal).

Leave-one-out validation method was used to evaluate the

predictive classifier performance. Performance was as-

sessed in terms of the overall classification correctness and

expressed in percent.

All 21 4D aortic MR images were successfully seg-

mented by our 4D segmentation algorithm. Comparison of

computer-determined and expert-traced surfaces showed

good agreement. Fig. 2 summarizes the signed position-

ing errors obtained for each 4D image.

For the sixteen-phase 4D image data, all cardiac

phases were considered a single shape/motion instance and
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Figure 1. A registered 3D image resulting from merging the LVOT and candy–cane image data, shown in three standard

orthogonal views.

Figure 2. The average signed positioning errors for aortic segmentation.
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Figure 3. Classification correctness vs. number of PCs

selected for SVM classification.

10,713 landmarks were generated. The first 6 principal

components were selected as SVM input features. The

classifier exhibited correctness of 96.7%.

The achieved results demonstrate that the functional

(shape and motion) information is an important contributor

to the ability to distinguish between the normal and con-

nective tissue disorder subjects. This shall not be surpris-

ing since the aortic motion is considered an important fac-

tor in diagnosing the aortic disease. Fig. 3 gives classifica-

tion correctness assessment as a function of the number of

PCs selected for SVM classification. This curve shows that
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the best classification result for the sixteen-phase model is

reached when 6 PCs are selected.

4. Discussion and conclusions

In this study, a computer-aided diagnostic method to

identify subjects with connective tissue disorders from

4D aortic MR images was presented. The use of the

4D fast marching algorithm provides an automated pre-

segmentation of the aorta allowing determination of the

aortic centerline. Using the centerline, optimal graph-

based multiple surfaces detection algorithm generates ac-

curate and robust 4D segmentation surfaces simultane-

ously on the 4D aortic MR images. This segmentation

results also guaranteed a globally optimal segmentation

result. The resulting aortic surfaces showed an excellent

agreement with the segmentations traced by expert ob-

servers.

When comparing the single-phase and 16-phase disease

classification acuracy, the classification accuracy gener-

ated from the sixteen-phase 4D model was substantially

better compared to that obtained by the single-phase model

(86.7%). This result demonstrates that the motion informa-

tion which is captured in the 4D model likely contributes

to the classification performance and is therefore related

to the connective tissue disorder disease. This motion in-

formation is difficult to observe by a human eye but it can

apparently be detected by our 4D CAD system.

Our novel approach to objective image-based computer-

aided identification of connective tissue disorder subjects

offers excellent performance. Our results yield a great

promise to focusing on the next step of our research –

computer-aided determination of disease status from lon-

gitudinal sequences of MR image data.
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