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Abstract

A robust model-based segmentation method for auto-

matically detecting left ventricular endocardial borders in

cardiac MRI short-axis slices is proposed. The method

is evaluated with expert drawn contours on an extended

dataset (83 cases).

The contour detection involves the four steps: (a) A re-

gion of interest enclosing the left ventricle is computed us-

ing a size invariant circular Hough transform. (b) Seg-

mentation is performed by an adaptive threshold detection

method taking model-based information into account. (c)

Papillary muscles are included into the endocardial bor-

der by merging scattered regions and interpolating the re-

sulting contour with approximating periodic splines. (d)

Outliers and partially wrong contours are finally removed

by applying a three dimensional median filter.

1. Introduction

In patients with reduced left ventricular function (LVF)

the frequently concomitant left bundle branch block

(LBBB) leads to a further deterioration of global heart per-

formance due to asynchronous contraction. Implantation

of biventricular pacemakers may be an option for these pa-

tients [2]. QRS duration alone has failed to serve as pre-

dictive parameter for the clinical outcome of patients after

biventricular pacing, since ventricular synchronicity does

not necessarily require a synchronous electrical excitation

[3]. In previous studies [1, 4, 5] we showed the utility of

measuring phase differences in left ventricular contours.

As a major part in finding these phase differences is the

detection of the left ventricular endocardial borders we fo-

cused this study on finding these contours automatically.

2. Methods

2.1. Subject data

The subject group of a previous study [1] was extended

to 65 subjects with dilated cardiomyopathy (DCM) from

which 35 had a left bundle branch block (LBBB), and

20 healthy subjects. Due to low image quality and non-

uniform brightness distribution two MR recordings had to

be excluded: one from the LBBB group and one from the

DCM w/o LBBB group.

The remaining 63 DCM patients had an average left ven-

tricular ejection fraction (LVEF) of 26.7% with standard

deviation 9.2%. The control group had an average LVEF

of 70.3% with standard deviation 4.8%.

2.2. Imaging

Imaging was performed on a 1.5T whole body scan-

ner (Intera CV, Philips Medical Systems, Software Re-

lease 9.1) with Master Gradients (slew rate 150T/m/s,

amplitude 30mT/m). A 5-element phased-array cardiac

coil was used. Three short survey scans were performed

to define position and true axis of the left ventricle. Af-

terwards, wall motion was imaged during breath holding

within long and short-axis slices using a steady-state free

precession (balanced fast-field echo) sequence, which pro-

vided an excellent endocardial contrast. Cardiac synchro-

nization was achieved by prospective gating. The cine im-

ages were recorded with 23 or 32 frames per heart beat and

with a slice thickness of 10mm (8mm in some cases).

2.3. Image analysis

All endocardial borders of the left ventricle were man-

ually drawn by an expert (five inner short axis slices) for
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Error Functional

The error functional E(θ) requires the computation of

two further contours: The outer contour c
(θ)
o is acquired

by extending c(θ) radially to its center by ∆ = ROIy/60
pixels; a 60th of the height of the ROI. An inner contour

c
(θ)
i is determined by morphological erosion of the main

region Rt with a circular shaped structural element with

diameter ∆ and a tracing of the boundary of this region

(see Figure 2).

Figure 2. The inner c
(θ)
i (blue), outer c

(θ)
o (green), and

actual contour c(θ) (red) are shown for the ROI of a short-

axis slice. If the threshold θ reaches an acceptable value

the mean brightness of the inner contour mi becomes high

and those of the outer contour mo - lying in the wall - be-

comes low. The variances si and so should become low in

this case.

The proposed error functional E(θ) consists of the fol-

lowing parts:

• The mean brightness of the inner (bright) Ii and outer

(dark) Io pixels as determined by Otsus threshold.

• The intensity values along the outer contour xo(k), k =
1 . . . no and the inner contour xi(k), k = 1 . . . ni.

• Mean and standard deviation of the intensity values

along the outer contour mo and so and the inner contour

mi and si.

• Square distances of the intensity values of the inner

contour to the mean brightness Ii which are too dark:

fi = 1/ni

∑ni

k=1 H+(Ii − xi(k))2 for the threshold func-

tion H+(x) which is x for x > 0 and 0 otherwise.

• Square distances of the intensity values of the outer

contour to the mean brightness Io which are too bright:

fo = 1/no

∑no

k=1 H+(xo(k) − Io)
2.

• The relative mean difference dmean to the predicted con-

tour: d(c∗, c(θ))/r̄ for the mean radius r̄ of c(θ).

• The difference of the maximum radius distance between

the contours c∗ and c(θ) relative to r̄: dmax.

The error functional

E(θ) =20 ·

[

(fo +
fi

6
) +

1

4
(so +

si

6
) +

1

6
(mo −

mi

6
)

]

+ 2 · dmax + dmean

reflects the model assumptions: 1) the variance should be

low in the inner and outer contours, 2) the difference of the

mean brightnesses of the inner and outer contour should be

high, 3) the found contour should be in the nearness of the

predicted contour c∗.

2.5.1. Spline Interpolation

Papillary muscles lying at the endocardial wall often ob-

scure the ventricular contour. Hereto an approximating

weighted periodic cubic smoothing spline [10],[11, Chap-

ter 5] is used to interpolate missing parts of the contour

that are detected by finding regions where the convex hull

does not cover the endocardial main small environment.

To determine these regions the spline curve is sampled at

n = 128 equiangular steps and the binary image was di-

lated by a circular structural element of size 5 × 5. As

the approximation is applied to the radius profile relative

to the center of gravity a one-dimensional spline was suf-

ficient. The smoothing factor is set to twice the number of

gap pixels 0 ≤ ng ≤ n but at least to 40. For the contour

a binary vector b ∈ {0, 1}n is constructed which contains

a 1 for each present point (covering the main region) and a

0 for each gap point. A circular morphological closing on

b with window size 11 removes small gap regions and a

subsequent circular erosion with window size 5 smoothes

the edges into the gap regions resulting in the new binary

vector b̂. The number of gaps is ng = #{k | bk = 0} and

the spline weights were set to w(k) = 0.1 for all bk = 0
(gap) and w(k) = 0.8 for all bk = 1 (present) such that

the missing contour parts are smoothed stronger by lower

weights.

2.5.2. Continuity correction

Discontinuities and outliers of the contour motions were

enhanced by using a median filter of window size w = 3
over adjacent time frames and slices. For each slice s
the mean center m̄s over all time frames is computed and

all contours cs,t were resampled relative to m̄s at the an-

gles θk = 2π k
n

, k = 0 . . . n − 1 for n = 128 yield-

ing radius profiles rs,t(k) > 0. The different diame-

ters of the slices were adapted before filtering for s and
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s′ = s−w . . . s + w by r̂
(s)
s′,t(k) = rs,t(k) · us(k)/us′(k),

k = 1 . . . n with the median radii over all phases being

us(k) = median{rs,t(k) | k = 1 . . . n}. The filtered

signals became r′s,t = median{r̂
(s)
s′,t′ | s − w ≤ s′ ≤

s+w, t−w ≤ t′ ≤ t+w} and were then transformed back

into cartesian coordinates yielding the final post-processed

contours ĉs,t.

Outliers, where the contour of a single time frame was

erroneous (e.g. due to bad segmentation, the endocardial

region became spuriously connected to a region outside

the endocardium), could be removed successfully with this

method.

3. Results

The following three contours were compared:

A: The convex hull of the connected main region of the

left ventricle segmented by the optimized threshold θ∗ .

B: The spline-interpolated contours cs,t before median fil-

tering.

C: The median filtered contours ĉs,t.

by measuring the deviation to the manually drawn con-

tours. The mean absolute radius deviations (sampled over

n = 128 equiangular steps) were A: 3.50 ± 1.95, B:

3.09 ± 1.89, and C: 2.99 ± 1.67. These values represent

pixels in the scaled 400 × 400 image. The three contour

detection methods were compared using a paired Wilcoxon

rank sum test. Method B had lower deviations than A and

C a lower deviation than B (p-values < 2.2e − 16).

4. Discussion and conclusions

A fast method for automatically tracing the left ventric-

ular endocardial border in cardiac MRI was proposed. Pre-

knowledge was included by constructing an error function

that incorporates prior experience segmenting the endocar-

dial border of the left ventricle on these images. Further-

more adjacent time frames and slices were used to stabilize

the found contours and remove artifacts. The usefulness of

the spline interpolation in combination with the median fil-

tering was shown by comparing these to manually drawn

contours.
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