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Fractality in Heart Rate Variability Data?
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Abstract

Detrended fluctuation analysis (DFA) is becoming a
widely used technique for exploring the structure of corre-
lations in heart rate variability (HRV) data. This method
provides a scaling or fractal exponent « derived from the
behaviour of the root-mean-square fluctuations along dif-
ferent time scales n. Rather than just finding a single ex-
ponent, covering either short or long range, we recently
suggested to track the local evolution of a as in this way
scaling patterns (SP), which seem to provide more detailed
characterisations of HRV data, are revealed. Here, we
evaluate such potential advantage by classifying long-term
data from 50 subjects in normal sinus rhythm and 29 con-
gestive heart failure patients. Using the SP we achieved a
significantly better classification of these data than using
Q, thereby confirming that the SP provide a useful assess-
ment of the correlation structure in HRV data.

1. Introduction

The heartbeat fluctuations involve power-law correla-
tions over different time scales that break down under
pathological conditions [1, 2, 3]. Thus, among time and
frequency methods, detrended fluctuation analysis (DFA)
is becoming a widely used technique for exploring the
structure of correlations in heart rate variability (HRV)
data [4]. Essentially, with DFA it is explored the behaviour
of the root-mean-square fluctuations F along different time
scales n. With this aim, a scaling exponent, covering ei-
ther the short (a7) or long range (avp), is generally derived
from the log-log plot of such relationship [1]. A result-
ing exponent of 0.5 indicates white noise and the absence
of long-term correlations, a value of 1 represents the be-
haviour of a 1/f process having persistent fractal corre-
lations, and exponents of 1.5 or above reflect a Brownian
motion and the existence of non-stochastic long-range cor-
relations. Rather than just finding a single exponent, we
recently suggested to track the local evolution of « along
n by using a recursive least squares method [5]. This
reveals a structure of correlations, or scaling behaviour,
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along scales that we define as scaling patterns (SP). Inter-
estingly, the SP seem to provide more detail than o about
the differences in the dynamics of HRV data from healthy
subjects and patients with heart failure [5]. For instance,
we have found patterns of HRV data not always presenting
auniform power-law behaviour, and the existence of domi-
nant characteristic scales in abnormal physiological condi-
tions [5]. In this study, we assess such potential advantage
by classifying data from presumably healthy subjects and
congestive heart failure patients using the conventional o
and o exponents, as well as the SP.

2, Methods
Long-term 24 hours HRV data of 50 adults in normal
sinus rhythm (NSR) and 29 congestive heart failure (CHF)
patients were gathered from the RR interval databases of
PhysioBank [6], which contain information derived from
ECG recordings digitised at 128 Hz. NSR subjects aged
28 to 76, and CHF patients aged 34 to 79 (NYHA classes
I, 11, TIT).

DFA was applied to obtain o and ao exponents as
follows [1]. The original RR interval or HRV series is
summed by:

Y (k) = YO[RR() = RRavd

i=1

D

where Y (k) is the k-th value of the resulting series
(k=1,2,...,N), RR(i) is the i-th RR interval, and RRg,.
is the mean R R value of the entire original series of length
N. Next, Y (k) is divided into windows, or boxes, hav-
ing equal numbers of n beats or RR intervals. The local
trend Y, is obtained in each window by a least-squared line
fit and is locally subtracted from Y (k) to reduce the non-
stationary artifacts. The average root-mean-square fluctu-
ation, F'(n), is then calculated:

Py = |+ SV -k @
k=1
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Figure 1. RR interval data from a NSR subject A) and
a patient with CHF B). Whereas C) and D) show corre-
sponding a7 (bold) and « (thin) slopes for both cases, E)
and F) depict their SP.

The procedure is repeated for all boxes size or time
scales. Finally, the relationship on a double-log graph be-
tween fluctuations F'(n) and time scales n can be approx-
imately evaluated by a linear model F'(n) ~ n® that pro-
vides the scaling exponent a.

In this study «, was estimated by the slope of the double-
log plot covering the short- (4 to 11 beats for o) or long-
term range (> 11 beats, for ap) [1, 4].

In addition, the local evolution of « as a function of log
time scales (or boxes size n) was also tracked by using a
recursive least squares method, the o filter. This provided
gradients, a(n), which as specified above are referred to in
this manuscript as SP, where the structure of correlations or
scaling behaviour along scales can be identified distinctly
[5].

Accordingly, the long-term RR data of NSR subjects
and CHF patients were then classified by using a1, a2 and
the SP (a(n)).

Given that SP show several relevant features that are not
revealed by scaling exponents (see Figure 1 and ref. [5]),
different classification techniques were used. For a, (a1
or aip) a threshold technique was utilised. In this scheme
the values below the threshold belonged to one class and
the rest to the other. The classification with SP was more
complicated and Support Vector Machines (SVM) were
used [7, 8]. As the classes (either NSR or CHF data) could
not be separated in the original space, the values of SP
were represented on a hyperspace via kernel transforma-
tions. Then, a training set was used to find a hyperplane
that divided the hyperspace in two regions for the NSR and
CHEF classes (the separation hyperplane was determined by
a set of points, called support vectors).
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NSR: 1.106 = 0.163
CHF: 0.843 = 0.234

Figure 2. Histogram (fq expressed as % ) of the a; expo-
nent values for both classes.

—sn
— CHF

NSR: 1.041 = 0.075
CHF: 1.090 = 0.109
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Figure 3. Histogram (fq expressed as %) of the as expo-
nent values for both classes.

These classification results (using a,, and SP) were com-
pared via receiver operating characteristic (ROC) curves;
but owing to the reduced number of samples, two resam-
pling methods were used to obtain reliable ROC areas.

A bootstrap method [7] was applied to generate 200 sets
of a1 or ay exponents. Each set was classified, thereby
obtaining accuracy indexes and ROC areas estimated by a
Wilcoxon test. These values were finally averaged [9].

A 10-fold cross-validation method was applied to the
SP classification. Thus, from the original SP two subsets
were derived to train and test SVM. With this aim software
gathered from internet was employed [10]. As above, since
each fold provided a ROC area and accuracy index, results
from the 10 folds were also averaged.

The different number of repetitions responded to the
computational cost of each technique. For SVM four pa-
rameters were adjusted (kernel, cost, degree and -y), and
around 300 classifications for each repetition were made
to obtain the optimum local values. In this study each SP
was formed with 473 equidistant points.

3. Results

Figure 1 shows typical results of the RR data, scaling
exponents and SP for both NSR and CHF cases. Clearly
the CHF data involve a reduced RR variability, a low value
of a1, and different SP morphology than NSR data (the ap
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Figure 4. SP mean (£ SD) from all NSR subjects A) and
CHF patients B).

exponents are not perfectly adjusted along depicted points
because these slopes were estimated from the whole long
range (n > 11), and for clarity, the figure only presents a
restricted range of n).

Figures 2 and 3, show the histogram of o; and o values
for all NSR and CHF cases. As the scaling exponents are
overlapped in both figures, a perfect classification cannot
be reached. Figure 4 shows the SP mean value (£ SD) for
data of both cases, which in the same way indicate that a
classification with a 100% accuracy is unlikely without a
transformation, because there exist scales where the SP of
both conditions coincide.

ROC areas found by classifying RR data of NSR sub-
jects and CHF patients with a1, as and SP were 0.814+
0.057, 0.650 4+ 0.067, and 0.885 =+ 0.049 (see Figure 5),
and the accuracy values were 0.781, 0.630 and 0.854 re-
spectively. According to these ROC areas, the SP provided
significantly better classification than oy (p < 10~2) and
as (p < 1079), The classification was also significantly
improved by using a as compared with ay (p < 107%).
This result can also been appreciate in Figure 4, where the
largest difference in a(n) between cases seems to lay in the
short range. These p values were obtained by applying a
Mann-Whitney test for unpaired samples, and indicate that
SP combined with SVM become better classifiers than the
a, indexes. Yet the computational cost was higher because
of the larger number of characteristics classified. By se-
lecting SP formed with smaller number of points such cost
can be reduced, but as this would also reduce the ROC
area a further evaluation for finding a good compromise
between performance and computational cost remains to
be performed.

In the context of SVM, a polinomial kernel was deter-
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Figure 5. Figure shows the estimation of the averaged
ROC curves, for all the cases a binormal model was as-
sumed.

mined as the best transformation for our data. The cost
value was 1; ~ value was approximately 0.002, and the
transformation degree was 3. In this sense, the kernel was
the most important parameter to adjust. It seems that the
accuracy as a function of cost and v had a smooth be-
haviour showing maximum values around 1 for both pa-
rameters.

4, Discussion and conclusions

This study confirms that SP provide a more reliable as-
sessment of the correlation structure in HRV data than scal-
ing exponents, as it was revealed by achieving with them
a significantly better classification of NSR and CHF data.
Clearly, this was obtained by taking in consideration sev-
eral features with the SP, but also by the fact that different
classifiers were used.

Whilst in general the SP of NSR subjects involve a
uniform power-law behaviour (i.e. «(n) closer to unity
along different scales), the CHF data present lack of cor-
relations at short-range scales, and two projections above
unity at intermediate- and long-range scales (figures 1 and
4). As discussed before these CHF features are not fully
reflected by the scaling exponents (see Figure 1). These
features are originated from the impaired autonomic re-
sponse, Chyne-Stokes type respiration, and probably from
the accentuated hormonal activity that are typical of this
condition [5]. Also important is to discuss that we found
some of the NSR subjects presenting SP more similar to
the CHF abnormal features, as well as some CHF patients
not clearly presenting them. Hence, the SP could be use-
ful to indicate early subclinical manifestations in presum-
ably healthy subjects, or to complement evaluations, like
the NYHA classification, which could be affected by the
physician criterion.

The DFA technique is applied to detect structural or dy-
namical rather than quantitative changes in HRV data. Ac-



cordingly, the advantage of performing a detailed analysis
using SP may be relevant as we have confirmed here that
DFA provides potential information, which appears to be
ignored by using single or coarse scaling exponents de-
rived from linear estimations over predefined ranges ().
This idea has also been studied by Makowiec [11], who ob-
tained similar conclusions using a multifractal technique.

Thus, the SP may become useful tools for exploring and
evaluating the potential for HRV analysis to be used widely
in clinical practice, a circumstance that, as indicated by
Mahon et al. [12], still needs to be elucidated. Further-
more, the SP could help clarifying why spectral an scal-
ing measures are correlated during strictly controlled con-
dition, but their relationship is weak during free running
recordings(4, 13].
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