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Abstract 

A fully automated segmentation of the endocardial 

surface was developed by integrating spatio-temporal 

information of 3D ultrasound image sequences. 2D and 

3D (adaptive) filtering was used to reduce speckle noise 

and optimize the distinction between blood and 

myocardium, while preserving sharpness of edges 

between various structures. Four different filters (2D 

Adaptive Mean, 2D and 3D Adaptive Mean Squares 

Filter and 2D Local Entropy) were tested. Filter quality 

was measured by comparing overlap percentages of 

histograms of manually segmented blood and myocardial 

regions. ROC curves of manually segmented blood 

regions were determined to compare effects of the 

different filters. A deformable contour algorithm was 

used, after automatic thresholding, to yield a closed 

contour of the endocardial border in each elevational 

plane. Each contour was optimized using contours of 

surrounding spatio-temporal planes as limiting condition 

to ensure spatio-temporal continuity.  

1.  Introduction  

Finding the endocardial wall within echocardiographic 

images is an important preprocessing step for both 

volumetric studies and tissue characterization. 

Segmentation can be a helpful tool to visualize 

abnormalities in cardiac anatomy and to assess cardiac 

function and composition. Real-time 3D ultrasound 

images contain much information about the deformation 

cycle and the structure of the heart. 3D ultrasound is very 

suitable for imaging children as it is fast and non-invasive 

and, therefore, it might support clinical diagnosis of 

(congenital) heart disease at an early stage. 

However, echocardiographic images are difficult to 

analyze. The images contain a high level of multiplicative 

speckle noise and the non-isotropic backscattering 

characteristics of the heart wall produce a low echo level 

at longitudinal incidence of the ultrasound with respect to 

fiber orientation. This causes a reduced distinction 

between blood and myocardium. Pediatric echocardio-

graphic images are even harder to analyze, as image 

quality may be further reduced due to the smaller 

dimensions of the heart and relatively small intercostal 

spaces. Automatic segmentation of the heart wall is 

therefore a challenging scientific problem, and many 

strategies have been published in recent literature [1-4]. 

Segmentation methods that strongly rely on the shape and 

appearance of anatomical structures might fail to reveal 

cardiac abnormalities and, for this reason, are less suitable 

for echocardiographic images of children with a 

congenital heart disease. Deformable contour methods do 

not have this limitation. These methods use gradient 

information to steer the external forces to find edges, 

which will cause difficulties when applying such a 

technique to noisy ultrasound images. Therefore, some 

form of preprocessing of the ultrasound images might 

improve the performance of these techniques. 

Preprocessing should start with reducing the basic non-

homogeneous characteristics of echographic images. In 

this paper, speckle reduction, based on image statistics, 

automatic thresholding and deformable models were 

combined to segment the heart muscle.  

2. Methods 

Echocardiographic image sequences of the left 

ventricle of four healthy children were obtained using 

thransthoracic short and long axis view. The 2D and 3D 

radiofrequency (RF) data were acquired using a Philips 

SONOS 7500 live 3D ultrasound system equipped with 

an RF-interface. An X4 matrix array transducer (2-4 

MHz) and an S8 phased array transducer (3-8 MHz) were 

used to perform 3D and 2D imaging respectively. Data 

were transmitted to a workstation using a USB 2.0 

interface.  

A.  Preprocessing 
After the data was amplitude demodulated by using the 

Hilbert transform, spatial filtering was applied to denoise 

the images, while at the same time increasing the contrast 
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between blood and myocardium and preserving the 

sharpness of edges. Speckle characteristics are depth 

dependent due to beam diffraction and focusing, as well 

as due to attenuation, In particular, the lateral speckle size 

increases with depth [5,6]. This lateral speckle size in 

images obtained from a sector scanner can be 

homogenized in depth by processing the data along the 

scan lines, i.e., changing from a polar coordinate system 

into a rectangular matrix [7]. The data could thus be 

filtered using a sliding kernel with fixed size for all 

depths. The kernel size was expressed by a number of 

speckles rather than pixels, since speckles and not pixels 

should be considered as independent “grains of 

information” in echographic images of scattering media. 

Three adaptive filtering methods using 2D and 3D 

filtering kernels were applied and tested on the images: 

Adaptive Mean (AM) filtering (2D) and Adaptive Mean 

Squares (AMS) filtering (2D and 3D). The degree of 

smoothing was automatically steered by the homogeneity 

of the region the filter was operating on. Regions that 

contain edge are not homogeneous and therefore will be 

less smoothed than homogeneous regions, so this strategy 

guarantees preservation of the sharpness of the edges of 

various structures. These filters might optimize the 

discrimination between tissues such as blood, 

myocardium and pericardium. Besides adaptive filtering 

[8], local entropy [9] was used as a preprocessing step. 

Although the method itself is non-adaptive, this method is 

also based on the homogeneity (amount of information) 

in a region and contours are largely preserved. 

B.  Filter Quality 

Two quality measures were developed to test whether 

the filters non-linearly adjusted the echographic gray-

level information such that after filtering, the gray levels 

of blood and tissue did become more separated. Blood 

and myocardial regions were interactively segmented by 

an expert in the 2D axial-lateral plane for a set of images 

of each subject. The overlap percentages of the 

histograms from these two regions before and after 

filtering were used as a first quality measure. Histograms 

were normalized and then analyzed in the log(gray-level) 

domain. The difference in overlap percentages of blood 

and myocardium was tested using a Wilcoxon rank sum 

test over all datasets.  

As a second measure for the quality of the different 

filtering method, the area under the ROC curve (AUC) 

was determined (ROCKIT) for the manually segmented 

blood regions. The blood region was then compared to 

tissue (myocardium, papillary muscles and pericardium), 

as this corresponds to the endocardial contour in the 

automatic thresholding method algorithm. Specificity and 

sensitivity were calculated for ROC analysis. To compare 

the difference in AUCs before and after filtering, a z-

score was computed for each dataset separately, and t-test 

was performed over all datasets.  

C.  Automatic Thresholding 

The Otsu method [10] was applied recursively to the 

data for finding the optimal threshold between blood and 

myocardium automatically. Thresholding was performed 

on the logarithm of the data because of the large spread in 

the case of the AM- and AMS filters. In case of the local 

entropy, filtered data were thresholded without the 

logarithmic compression because the histograms of the 

linearly encoded images were rather symmetric already. 

The optimal threshold was then used to generate a binary 

image in which blood is separated from the solid the 

tissues. Homomorphic filtering was applied to improve 

the result by removing spurious echoes. The resulting 

image was then used as the input for the deformable 

contour algorithm.  

 

D.  Deformable Contour 

To find the endocardial contour, a deformable contour 

algorithm [11]
 

including an inflating force [12] was 

applied to all elevational planes of the 3D volume. As the 

heart moves in a continuous way, continuity of the 

endocardial contours in spatial and temporal directions 

was assumed. 

Figure 1 Example of the four filtering methods for a single plane of a 3D dataset. From left to right: unprocessed 

data, AM filter 2D, AMS filter 2D, AMS filter 3D and local entropy 2D. 
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Transforming this assumption to boundary conditions of 

the deformable contour algorithm, the contour in the 

current plane C(x, t) is optimized by using contours of 

adjacent planes in time and place as limiting condition. 

For spatial continuity C(x-1, t) is used as limiting 

condition. Temporal continuity is imposed by using C(x, 

t-1) to limit C(x,t). To initialize the algorithm, the first 

contour was computed in the systolic phase in the 

foremost plane of the 3D dataset, without any 

optimization in terms of continuity. For each frame, the 

endocardial contours obtained by the optimized 

deformable contour algorithm were combined to form the 

endocardial surface.  

3.  Results 

The quality of the four different filters was examined 

for 16 datasets of the four children. In 10 of the datasets 

3D data were contained. Figure 1 shows that the four 

filtering techniques resulted in a reduction of speckle 

noise and preservation of the sharpness of the edges. It 

can be seen that inhomogeneous regions, such as the 

pericardium, were almost unaffected by the adaptive 

filtering procedures, whereas the entropy method also 

smoothed these regions. The entropy method resulted in 

slight changes of the position of the edges. 

 Overlap percentages of the histograms of the manually 

segmented blood pool and myocardial region before and 

after filtering were computed for all 16 datasets. Figure 2 

shows an example of manually drawn contours together 

with the histograms of these regions before and after 

filtering. In this case, the overlap percentage of blood and 

myocardial regions decreased from 48.8% before filtering 

to 33.8% after 2D AMS filtering. Table 1 lists mean and 

standard deviation of overlap percentages for all 3D 

datasets. All filter techniques showed a decrease in 

overlap percentage for all individual cases. A Wilcoxon 

rank sum test on the difference in overlap of histograms 

of blood and myocardium before and after filtering 

showed a significant decrease (p < 0.01). 

Average values and standard deviations for the AUCs 

are denoted in Table 1, where a higher AUC indicates a 

higher accuracy. Both statistical tests on the difference in 

AUC showed that, compared to the AUCs of the 

unprocessed data, AUCs of the filtered data have 

increased significantly. However, mutual comparison of 

the four filters indicated that there is no significant 

difference in overlap percentages nor in AUCs. The 2D 

AMS filter, in combination with automatic thresholding, 

was chosen as preprocessing step for the deformable 

contour algorithm as this filter performed well on both 

overlap percentage and AUC tests.  

 The deformable contour algorithm was applied to a 

3D dataset acquired over a full heart cycle to find the 

endocardial surface. Visually plausible contours were 

obtained for all elevational planes. Using 4D information 

by imposing spatial and temporal continuity for contours 

of the separate planes, better segmentation of the ventricle 

was obtained rather than by using information of each 

plane separately. An example of one particular elevational 

plane of the heart cycle and the complete endocardial 

surface is shown in Fig. 3. The endocardial surface shows 

coherence between the contours of adjacent planes, 

following the assumption of temporal and spatial 

continuity of the heart movement used by the deformable 

contour algorithm. Due to possible anatomical 

abnormalities of the heart in children, no smoothing of 

the endocardial surface was performed as this might have 

blurred anatomical details. 

Figure 2. Manually segmented contours of blood and myocard regions unprocessed data (left). Normalised 

histograms of blood and myocard before (center) and after (right) 2D AMS filtering . 

 

Figure 3. Optimized deformable contour (left) and 

resulting endocardial surface (right). 
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4. Discussion and Conclusion 

A three-dimensional segmentation method of the 

endocardial surface was described. The preliminary 

results of the study indicate the potential of the 

combination of adaptive filtering using image statistics 

and deformable contours. The method is fully automated, 

no user interaction is required, except from the choice of 

the initial plane the deformable contour algorithm is 

started from. In clinical practice, this initial starting plane 

can be automatically chosen if 3D volumes are acquired 

in a standard way. Selection of the proper starting frame 

in time can be done using the ECG. The ECG can also be 

used to improve the segmentation algorithm by 

integrating information related to the phase within the 

cardiac cycle. Adaptive filtering also improves the 

distinction between myocardium and pericardium and, 

therefore, can also be used as a preprocessing step for 

segmenting the pericardium. Although the method is used 

to perform three-dimensional segmentation, the method 

has to be optimized by using 3D deformable surfaces to 

integrate temporal and spatial information more strongly. 

As the myocardium is an inhomogeneous structure and 

because only a fraction of the myocardial muscle fibers is 

perpendicular to the ultrasound beam, part of the 

myocardium has very low echogenicity and is hard to 

distinguish from (electronic) background noise. This may 

cause problems in the segmentation process if prior 

knowledge about the anatomy would completely 

discarded. 
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Table 1. Overview of mean and standard deviation of histogram overlap percentages and AUC of ROCs for unprocessed 

data and different filtering methods  

 Gray level histogram ROC analysis 

Filter method Mean overlap % 

n = 10 

Standard deviation of 

overlap % 

Mean AUC % 

n = 10 

Standard deviation of the 

mean AUC % 

Unprocessed data 44.2 3.7 88.48 3.1 

AM filter 29.0 6.4 93.41 2.8 

AMS filter 28.6 6.0 94.04 2.7 

AMS3D filter 28.5 5.4 94.19 2.9 

Entropy 29.1 6.1 94.11 2.9 
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