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Abstract 

A real- time, denoise, and compress algorithm based 

on the wavelet transform (WT) for abdominal 

electrocardiograms (AECG) signals is designed. In this 

study an algorithm is designed which achieves an AECG 

with minimal noise and high compression rate (66.7%) 

while keeping the AECG quality at a clinically acceptable 

level. This is done at the first stage before extracting the 

fetal electrocardiogram (FECG) from the AECG. 

 A new mother wavelet (MW) is especially designed for 

AECG analysis. No complex low- and high- pass 

reconstruction and decomposition filters, with (bi)-

orthogonal properties, are needed as is traditionally the 

case. The algorithm can also be used to design a MW for 

other purposes. The algorithm is evaluated by AECG data 

from the Database for the Identification of Systems 

(DaISy) showing low MSE (<<1.2%), RMS (<<0.016 

µVolt), and excellent visual similarity between the 

original and the reconstructed AECG. 

 

1. Introduction 

Recently, high-risk pregnancies are becoming more 

prevalent. Twenty percent of all pregnancies are 

complicated by preterm delivery, fetal growth retardation, 

or hypertension. Therefore, the state of the fetus must be 

carefully and frequently monitored to intervene promptly 

when necessary. The currently available technique for 

monitoring mother and fetus, cardiotocography (CTG), 

has limited predictive value, suffers from subjective 

assessment of the obtained records, and is not very well 

suited for 24-h and at-home monitoring. An interesting 

non-invasive method is to monitor the fetal 

electrocardiogram (FECG). Important issues are 

denoising the FECG, data compression, fast data 

transmission to guarantee real-time communication and 

low transmission costs. 

In the past few years, much work has been done in 

ECG signal denoising/compressing using wavelet 

transforms (WT) with excellent performances compared 

with standard techniques [1, 2]. The WT meets the ability 

of high compression without losing clinically important 

data, is fast enough to guarantee real-time monitoring, 

and can easily be programmed in a microprocessor or 

FPGA for use in at-home monitoring. Other methods that 

have been developed are noise cancellation [3], multi-

channel singular value decomposition [3], adaptive 

filtering technique [4], blind source separation [4, 5], and 

singularity detection with wavelets [1, 6]. 

 Unfortunately, measurements techniques are not so far 

yet to measure FECG non-invasively with a high signal-

to-noise ratio. Only invasive methods exist, by placing 

electrodes on the fetal scalp during childbirth. Instead of 

this, the electrocardiogram at the abdomen (AECG) is 

measured by placing electrodes on the maternal abdomen. 

The AECG is a linear superposition of the FECG and the 

electrocardiogram of the mother’s heart: the maternal 

electrocardiogram (MECG). An additional algorithm, not 

included here, must be developed to extract the FECG out 

of the AECG. Problems occur, since the FECG has a 

normal maximum QRS amplitude in the range of 10 to 50 

µVolt
1
 [6, 7] much lower than the MECG, which has a 

normal maximum QRS amplitude of 1600 µVolt [8]. At a 

further stage, the FECG can be extracted from the AECG 

by measuring the maternal heart rate (MHR) and applying 

filters to remove the maternal QRS complex.  

This paper presents an algorithm based on the WT to 

denoise and compress the AECG without losing 

significantly mathematical or visual (medical) 

information. An important stage in WT, is constructing a 

function, called the mother wavelet (MW), which is 

preferable to have a shape similar to the AECG. Higher 

compression is achieved when more correlation exists 

between the MW and the transformed signal into wavelet 

coefficients. Although a great number of MWs exist, little 

or no literature exists about MWs having a similar shape 

as an AECG or ECG. Instead, other existing MWs are 

used when transforming the AECG into wavelet 

coefficients.  

This study constructs a new MW, called AECG MW, 

with significantly better performances than MWs before. 

                                                           
1 Experimental results from week 24 to week 39 of gestation 
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In this paper, first the WT is derived for the new MW. 

Then the new WT is designed. Finally, an algorithm is 

presented which calculates the wavelet coefficients. 

  

2. Proposed algorithm 

In this section, first, the WT is explained that shows 

compression and denoising properties. Secondly, the 

AECG MW is presented. Finally, an algorithm is 

designed to identify the parameters of the MW. 

2.1. Wavelet transform 

The Continuous Wavelet Transform (CWT) [9] is 

defined as the sum over all times of the continuous signal 

f(t) multiplied by scaled, shifted versions of the MW ψ((t-τ)/s) as shown in (1).  

 

                                     (1) 

                                                

 

The parameter s is the scale factor that compresses or 

stretches the MW and τ is the translation of the MW 

along the time axis.  

The CWT can be considered as a correlation of f(t) 

with the MW, stretched or contracted by the scale factor s 

and considered at time lag τ. Higher correlation exists if 

f(t) and the MW show higher similarity, presenting less 

information in the other wavelet coefficients of the CWT 

and more information in the MW. Since the MW is 

known by the receiver, only the wavelet coefficients are 

transmitted. This property is used in compressing the 

AECG.  

The signal f(t) is represented  by coefficients γ(s, τ) 
multiplied by the MW, scaled by the scale s and 

translated by τ. This representation is shown in (2).  

 

                (2) 

 
 

The Discrete Wavelet Transform (DWT) is defined by 

splitting f(t) into smaller non-overlapping parts fi(t), 

taking a finite number of scales N (j=N, k=N), and 

downsampling ( ⇓ ) the discrete wavelet coefficients with 

N to reduce the number of wavelet coefficients samples to 

M, the number of samples of fi(t), as shown in (3).  
 

 

         (3) 

  
 

The inverse discrete wavelet transform (IDWT) is 

shown in (4) where fr,i [t] is the reconstructed fi(t) signal.  
            

                                                                                     

                                                                                    (4) 

2.2. AECG mother wavelet 

The normal AECG is constructed by a linear 

superposition of the normal MECG and normal FECG 

and sampled at 500Hz as recommended by the American 

Heart Association and used as standard in Hospitals. The 

QRS and T waves of the MECG and the FECG are 

simulated by an algorithm based in part on [10], 

originally created by [11], and further modified in this 

study.  

The normal values used for modelling the MECG and 

FECG are the means of the values shown in Table 1 and 

2.   

 
 

The normal MHR is between 60-100 beats per minute 

(BPM) [6]; the normal fetal heart rate (FHR) is between 

120-160 BPM [13]. The MECG and FECG are modelled 

with the mean value of MHR and FHR, respectively. 

As stated earlier, the MW is preferable to have a shape 

similar to the AECG. The AECG consists of a maternal 

QRST complex (4 peaks) and a fetal QRST complex (4 

peaks). A Gaussian can be used to model the peaks in the 

AECG since a Gaussian is symmetric around its mean, 

gains its maximum value at the mean and goes very fast 

to zero, similar to a peak. Hence, a Gaussian interferes 

minimally with other Gaussians and therefore all peaks of 

the AECG can be modelled by summing up a minimum 

of 8 Gaussians. The conditions of being a MW are 

satisfied by taking as MW the normalized normal AECG 

for positive time (t>0) and the negative (*-1) normalised 

normal AECG for negative time (t<0) and centering the 

resulting waveform at zero time. 

2.3. Parameters sj, ττττk and γj,k,i [sj,ττττk] 

In this section, the parameters sj, τk, and γj,k,i [sj,τk] are 

identified. For sj, discrete positive integer values are 

chosen, since sj is the scale factor and no restrictions exist. 

The other wavelet coefficients are identified using the 

autocorrelation of the MW and reducing the row echelon 

form of a VxV matrix using V AECG samples. 

 

3. Results and discussions 

In this section, experiments are described to evaluate 

several AECG MWs and to compare the best one 

obtained existing MW from the Matlab wavelet toolbox. 

     TABLE 1               TABLE 2 

    NORMAL MECG VALUES [8, 12]      NORMAL FECG VALUES [13-15] 

 
Amplitude 

(µV) 

Width  

(s) 

 Amplitude 

(µV) 

Width 

(s) 

QRS 1600 0.07-0.11 QRS 10-50 0.02-0.05 

  T 100-400         0.18    T 0-0.35·QRS 0.09-0.14 

QT  0.38-0.44 QT  0.16-0.29 
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Fig. 2: Original and reconstruction signal with data from DaISy [16] 

The difficulty in evaluating and comparing this method 

with others is that no general AECG database exists. 

Previous researches refer to own acquired data. A nearly 

new database called DaISy [16] contains AECG 

recordings from one pregnant woman from 5 different 

positions during 5 seconds.  

The AECG MW is calculated for different scale levels. 

A maximal scale level of 5 is used, to avoid excessive 

processing time needed in calculating τk for a higher scale 

level. The MWs are evaluated using the MSE and the 

RMS. Also a visual comparison is performed between the 

original and the reconstructed signal. 

 
 

In Fig. 1 the original normal FECG and the modelled 

normal mnFECG (left) and the original normal MECG 

and the modelled normal mnMECG (right) are shown, 

both with 8 Gaussians, with excellent visual similarity.  

Moreover the mnFECG and mnMECG are smoother than 

the original signals, as in real-life situations. Using more 

Gaussians will probably show better visual results but 

increasing complexity and processing time. Excellent 

modelling is also confirmed by a RMS of 0.324 µV and a 

MSE of 0.55% for the mnFECG and a RMS of 9.532 µV 

and a MSE of 0.13% for the mnMECG. Combining the 

Gaussians of both mnFECG and mnMECG yields the 

desired modelled normal AECG (mnAECG).  

The AECG MW is designed using only the model of 

the mnMECG to avoid excessive processing time in 

calculating τk, since the superposition of the mnFECG 

and the mnMECG involves 16 Gaussians. The mnFECG 

can be shaped by the mnMECG, due to the fact that the 

mnFECG and mnMECG have similar shapes and 

comparable proportions, and that the WT has the property 

of compressing, stretching, and scaling a MW. Hence, 

superposition of the mnFECG can be omitted. However, 

it is interesting to introduce this model in a future study.  

Further the obtained MW is refined to satisfy the 

condition of being a MW.  

The evaluation of the AECG MW is done with 

normalized AECG data from DaISy (4
th

 dataset: 4.75-

5.00s) [16]. The results are shown in Table 3 where the 

column ‘fit MECG / FECG’ contains information about 

the visual similarity between the original and the 

reconstructed MECG / FECG peaks, where ‘ok’ means 

good AECG reconstruction, ‘peak’ means bad 

reconstruction of the AECG peaks, and ‘place’ means bad 

reconstruction of the location of the AECG peaks. 

 

 
The AECG MW with scale level 3 has still good visual 

similarity and has a low MSE and RMS. Table 4 shows 

similar results from DaISy (4
th

 dataset: 3.50-4.00s) [16].  

 

 
In Fig. 2 the original and reconstruction plots are 

shown of the last dataset used, using the AECG MWs 

with scale level 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last experiment consists of comparing existing 

MWs (scale level 3) with the AECG MW with scale level 

3. The results are shown in Table 5 using the same data as 

used for Table 4.  The existing MWs perform better than 

the AECG MW with scale level 3. The AECG MW could 

TABLE 4: EVALUATION OF THE AECG MW  

USING DIFFERENT SCALE LEVELS 

Scale 

level 
MSE (%) RMS (µV) FIT MECG FIT FECG 

1 0 0 ok ok 

2 0.38 0.008 ok ok 

3 1.2 0.016 ok ok 

4 3.0 0.025 peak peak (a bit) 

5 6.8 0.037 peak (a bit) peak, place 

 

TABLE 3: EVALUATION OF THE AECG  MW  

USING DIFFERENT SCALE LEVELS 

Scale 

level 
MSE (%) R MS (µV) FIT MECG FIT FECG 

1 0 0 ok ok 

2 0.24 0.010 ok ok 

3 0.96 0.020 ok ok 

4 1.5 0.025 peak peak 

5 7.3 0.054 ok peak, place 
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Fig. 1: Normal FECG (Top left), Normal MECG (Top right), 

mnFECG (Down left), and mnMECG (Down right) 
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perform better if: 1) τk is calculated at maximal 

resolution, 2) the AECG signal is modelled by using the 

model of the mnMECG with more than 8 Gaussians, 3) 

the AECG signal is modelled by using the superposition 

of the mnFECG and the mnMECG. (It is also interesting 

to use mnFECG and mnMECG models with each 

summation of more than 8 gaussians), 4) the AECG 

signal is sampled at a higher rate.  

 

 

Another point for future study is applying an 

appropriate threshold selection rule on the data [17], 

which can increase the compression rate. 

 

4. Conclusions 

This paper presents a denoise and compression 

algorithm for AECG signals based on wavelet transforms. 

In the first part, a general method to design a MW based 

on wavelet high correlation is designed.  An AECG MW 

is proposed with the ability to reconstruct several AECG 

signals with a maximum MSE of 1.2%, a maximum RMS 

of 0.016µV, and an excellent visual match with the 

original, without applying a threshold selection rule.  

The algorithm used guarantees real-time monitoring of 

an AECG signal, since the wavelet coefficients are 

calculated with a fixed delay of V samples multiplied by 

the AECG sample frequency and by a variable negligible 

delay (~ linear to the length of the AECG signal). Hence, 

the algorithm can be implemented by a chip which has 

the ability to produce accurate and fast reduced row 

echelon forms of the transformed signal. 
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TABLE 5: EVALUATION OF EXISTING MWS  

USING DIFFERENT SCALE LEVELS 

Mother wavelet MSE  (%) RMS (µV) 

Haar 6.72e-4 0.0050 

Daubechies 7(db7) 7.31e-4 0.0052 

Biorsplines 3.9 (bior3.9) 7.10e-4 0.0051 

Reversebior  3.9 (rbio3.9) 9.97e-4 0.0060 

Coiflets 5 (coif5) 7.12e-4 0.0051 

Symlets 8 (sym8) 7.00e-4 0.0051 

Dmeyer (dmey) 97.93e-4 0.019 
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