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Abstract 

   FPGAs provide an ideal template for run-time 

reconfigurable (RTR) designs. Only recently have RTR 

enabling design tools that bypass the traditional synthesis 

and bit stream generation process for FPGAs become 

available. Heart auscultation which is the interpretation 

of sounds produced by the heart is a fundamental tool in 

the diagnosis of heart disease. It is the most commonly 

used technique for screening and diagnosis in primary 

health care. This study aims at utilizing the discrete 

wavelet packet transforms in early detection of an Aortic 

Stenosis (AS) using heart sound data collected at  Sussex 

University Hospital in England. From the data analysis, a 

criteria has been proposed for the detection of the AS 

disease from the heart sound data. 

 

1. Introduction 

Development of auscultation techniques for the 

diagnosis of heart disease and disorders is still growing. 

Experience gives the cardiologists the ability to detect 

abnormalities such as the presence of murmurs, which 

may indicate a pathological condition. The description of 

murmurs is an important task and, when auscultation is 

carried out, the cardiologist's notes are the sole record of 

the patient's condition. These facts are subjective and can 

be interpreted in different ways. In order to eliminate 

subjectivity a signal processing method is needed for the 

representation of the first heart sound S1, second heart 

sound S2 and murmurs. Since 1991, many researchers 

have shown that continuous wavelet analysis can provide 

an adequate representation of the primary heart sounds. 

For most applications, however, the goal of signal 

processing is to represent the signal efficiently with fewer 

parameters. This paper considers the representation of 

murmurs by exploring the use of discrete wavelet packet 

transform (DWPT) using the wavelet base Daubechies 

‘db4’.  

The paper is structured as follows. Section 2 presents 

background information about heart sound auscultation. 

An overview of wavelet analysis is given in Section 3. 

Description of reconfigurable I/O (RIO) technology, 

Field-Programmable Gate Arrays (FPGAs), the data and 

the methodology used in the analysis are discussed in 

Sections 4 and 5. 

Description of the data and the methodology used in. 

Section 6 discusses the results obtained. Finally, Section 

7 concludes the paper.  

2. Heart sound and auscultation 

The technique of listening to the sounds produced by 

organs and vessels of the body is called auscultation. 

Phonocardiography (PCG) consists of the registration of 

the vibrations originating in the heart and associated 

blood vessels in order to obtain a visual record of the 

phenomena. Many studies attempted to extract features 

from heart sounds in order to understand their 

mechanisms as well as aiding in diagnosis. The 

techniques for recording and analysis have been changing 

as new electronic devices and signal processing 

techniques have become available. 

The heart sounds are those generated as a result of 

mechanical vibrations due to contraction and relaxation of 

the heart cavities. The heart sounds have been described 

and classified, basically in terms of duration and pitch, in 

order to identify them. The first and the second heart 

sounds are related to complete closure of the 

Atrioventricular (AV) and semilunar valves, respectively 

(Figure 1a). The first heart sound (S1) marks the 

beginning of mechanical systole. It consists of two 

intense high-frequency bursts of vibrations at the time of 

the AV closure and a few variable low-intensity 

vibrations [1]. The two components are known as M1 and 

T1 corresponding to the mitral and tricuspid components. 

The second heart sound (S2) marks the beginning of 

mechanical diastole. It consists of two high-frequency 

components that relate to the closure of the aortic and 

pulmonic valves, A2 and P2 respectively. The detection 

of the two components, their intensity, and time relation 

provide valuable diagnostic clues [1-3]. 
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Murmurs can be pathologic, when they are produced 

by an abnormal heart (Figure 1b). The most common 

symptoms are congestive heart failure, angina pectoris, 

and syncope. When the symptoms of aortic stenosis 

appear in a patient they indicate the point at which the left 

ventricle can no longer generate the elevated systolic 

pressure required. Among the valvular diseases, the 

patients with aortic stenosis show the shortest survival. 

 The average survival after the development of 

symptoms in individuals with untreated aortic stenosis is 

1.5 to 3 years [4]. Sudden death may also occur, 3 to 5 % 

of patients may die suddenly during the asymptomatic 

period as well as in 15-20 % of symptomatic patients [5].  
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Figure1.a)Normal heart Beat 
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Figure 1. b)Heart Beat for AS patient. 

 

3. Wavelet analysis 

    The continuous wavelet transform maps a one-

dimensional time signal to a two–dimensional time-scale 

joint representation. The time bandwidth product of the 

continuous wavelet transform output is the square of that 

of the signal. For most applications, however, the goal of 

signal processing is to represent the signal efficiently with 

fewer parameters. The use of the discrete wavelet 

transform (DWT) can reduce the time bandwidth product 

of the wavelet transform output. Performing a wavelet 

transform consist of convolving the signal with time 

shifted and dilated. The result of wavelet transform will 

be a set of coefficients, which are function of time and 

scale. These coefficients can be used to form a set of 

features that unambiguously characterize different types 

of signals [6]. 
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Figure 2. Filter bank representation of the DWPA 

decompositions. [10] 

The dilation function of the DWT can be represented 

as a tree of low and high pass filters, with each step 

transforming the low pass filter into further lower and 

higher frequency components. The original signal is 

successively decomposed into components of lower 

resolution, while the high frequency components are not 

analysed any further. In contrast with the regular DWT, 

the discrete wavelet packet analysis (DWPA)can 

significantly increase the versatility (Fig.2) and power of 

the discrete wavelet transform. Unlike the DWT, which 

only decomposes the low frequency components, the 

discrete wavelet packet analysis utilises both the low 

frequency components, and the high frequency 

components [7]. From these frequency components and 

using entropy-based criterion, a method for choosing the 

optimum scheme for the identification of Aortic Stenosis 

Disease can be developed. 

Entropy is a common concept in signal processing. 

Classical entropy-based criteria describe information 

related properties for an accurate representation of a given 

signal [8]. There are many entropy criteria among them: 

Shannon entropy, energy entropy, norm entropy and 
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threshold entropy [9]. In this study, norm entropy is used 

to extract some features from the PCG signals. 

 

4.         Reconfigurable I/O (RIO) Technology  

   With NI RIO technology, you define your own custom 

measurement hardware circuitry using reconfigurable 

FPGA chips and LabView graphical development tools. 

Now you can take advantage of reconfigurable FPGA 

technology to automatically synthesize a highly 

optimized heart sound detection implemented of your 

input/output system fig. 3.a. 

Figure 3.a  Reconfigurable I/O technology 

5.      Field-Programmable Gate Arrays    

(FPGAs) 

     FPGA devices are widely used by control and 

acquisition system vendors because of their performance, 

reconfigurability, small size, and low engineering 

development costs. FPGA based devices have been 

traditionally vendor defined rather than user defined 

because of the complexity of the electronic design tools. 

Now you can take advantage of user-programmable 

FPGAs to create highly optimized reconfigurable control 

and FPGA devices feature a reconfigurable digital 

architecture with a matrix of configurable-logic blocks 

(CLBs) surrounded by a periphery of I/O blocks. Signals 

can be routed within the FPGA matrix in any arbitrary 

manner by programmable interconnect switches and wire 

routes. Compact RIO offers 4 and 8-slot chassis with 

options for either 1million or 3 million gate FPGA chips. 

Representation of murmurs from pathologic and non-

pathologic subjects has been acquired from 20 patients 

with aortic stenosis and with different degrees of valve 

competence. The PCG data is collected at a sampling 

frequency of 4096 Hz. 

The algorithm of processing and identification of 

aortic stenosis disease implemented by the LabView 

package-signal processing toolkit, and can be divided into  

 

 

 

 

Figure 3.b General procedure for the identification of 

aortic stenosis disease 

three processes as described in Fig. 3.b. The first step 

in processing the PCG signals is to clean it from noise 

associated with PCG systems. Noise is caused by breast 

sounds; contact of the stethoscope with skin, ambient 

noise that may corrupt the heart sounds [11]. The data is 

filtered with high-pass Butterworth filter to eliminate 

noise. The Butterworth filter is selected because it has the 

least steepness of the amplitude response in the transition 

region. In the second stage, the DWPT (Fig. 2) is used to 

extract features that can be useful in the classification 

stage. The wavelet base Daubechies ‘db4’ is used since it 

has oscillations very similar to those of a PCG signals. In 

the last step, the norm entropy-based criterion is used for 

the classification of PCG signals.  

6. Results and discussion  

The PCG signals were normalized in energy to take 

into account the disparity in magnitude due to the 

different amplification used during acquisition as well as 

the variation induced by the lead sites. We determine the 

DWPT coefficients at level 6 for all nodes k=0,1, 2,.., 64. 

For DWPT level 6, the frequency band is divided into 

equal interval of length 32 Hz. Each node covers a 

frequency band, for example the 1
st
 node cover the 

frequency range 0 to 32 Hz, the second node covers the 

frequency range 32 to 64 Hz and so on. The frequency 

bands that are not very prominent in the original signal 

will have very low amplitudes, and these bands can be 

ignored without major loss of information. For the PCG 

signals, it is sufficient to study its behavior for the 

frequency range 30-256Hz which corresponds to DWPT 

nodes k=2, 3, …, 8. Then the entropy is computed at each 

node but at four time intervals: 

τ1: Time duration of S1 sound 

τ2: Time duration of S2 sound 

τ12: Time interval between S1 and S2 

τ21: Time interval between S2 and the next S1 

Let’s denote by E1, E12, E2 and E21 the entropy 

computed for the time intervals τ1, τ12, τ2 , and τ21 

respectively. An example of the variation of E1, E12, E2 

and E21 for each frequency band is shown in Figures 4 

and 5. 

The variation of the entropy with respect to the time 

interval and for each frequency band is studied for all the 

available data in order to determine some criteria to 
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distinguish between normal and aortic stenosis signal. It 

is observed that for normal data beat, E1 is larger than E2 

and E12 and E21 are generally smaller for the frequency 

bands 32 to 128 Hz. 

 

 

 

 

 

Figure 4. Typical Norm Entropy for a normal PCG signal 

obtained by the FPGA and RIO. 

 

 

 

 

 

 

Figure 5. Typical Norm Entropy for a AS PCG signal 

obtained by the FPGA and RIO. 

This result is expected since the normal PCG signal 

has higher energy during the heart sound S1 and S2 

which corresponds to higher value of E1 and E2. In 

addition, the amplitude of E1 and E2 is highest in the band 

32-96 Hz, then it decreases respectively in the band 96-

128, 64-96, and 128-160Hz. For the frequency band 160-

255 Hz, the entropy values are generally small. 

For the aortic stenosis data, it is noted that E1 is larger 

than E12 and E2 and E21 are generally smaller for the 

frequency bands 32 to 160 Hz. This indicates that the 

signal has more energy between the heart sound S1 and 

s2 due to systolic mummer. Moreover, the amplitude of 

E1 and E12 is highest in the band 0-32, 160-256 Hz, and 

then it decreases respectively in the band 32-160. For the 

frequency bands 160-256 Hz, the value of E1 and E12 is 

comparatively higher than that of a normal PCG signal. 

From these observations, we can propose the following 

criteria. If E1 is larger than E2 and both are larger than E12 

and E21, then the heart sound signal is normal. If E1 is 

larger than E12 and both are larger than E2 and E21, then 

the heart sound signal has the symptom of aortic stenosis 

disease. 

7. Conclusion  

Heart auscultation can be improved considerably by 

using modern digital signal processing techniques. This 

study utilizes the discrete wavelet packet transforms and 

the FPGA PXI 7831R in early detection of an Aortic 

Stenosis(AS) using heart sound data collected at the 

Hashemite University in Jordan . From the analysis of the 

data, a criteria has been proposed for the detection of the 

AS disease from the heart sound data. However, the 

number of data is limited and more is needed to validate 

the proposed criteria. 
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