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Abstract 

In this study we have investigated the classification of 

old myocardial infarction through the analysis of 192 

lead Body Surface Potential Maps (BSPM).  Following an 

analysis of the most prominent features based on a signal 

to noise ratio ranking criterion the top 6 features were 

selected.  These features were subsequently used as inputs 

to a series of supervised classification models in the form 

of Naïve Bayes (NB), Support Vector Machine (SVM) and 

Random Forest (RF)-based classifiers.  Following 10-fold 

cross validation it was found that the best performance 

for each classifier was 81.9% for NB, 82.8% for SVM and 

84.5% for RF. The results have indicated the ability of the 

approach to successfully classify the recordings based on 

a non standard subset of recording sites from the BSPM.  

 

1. Introduction 

The electrocardiogram (ECG) has been established as 

one of the most widely utilized tools for the non-invasive 

assessment of cardiac status. Although a number of 

standard techniques exist in clinical practice it is 

appreciated that there is benefit in considering alternative 

electrode placements in an attempt to provide a more 

representative picture of cardiac activity and hence 

improve the overall process of patient diagnosis.    

One of the most widely accepted standard techniques 

is the 12-lead ECG. Although a commonly used tool in 

clinical practice it is appreciated that there are 

deficiencies when diagnosing a number of cardiac 

abnormalities [1]-[3]. This is related to the fact that the 

recording sites are limited to a small area on the 

precordium. 

To offer a potentially improved approach would 

require techniques with denser spatial sampling for 

example BSPMs.  BSPMs have the ability to record 

cardiac information from as many as 200 recording sites 

on both the anterior and posterior surfaces of the torso 

and hence capture much more information than traditional 

techniques such as the 12-lead ECG.  This provides the 

potential for improved cardiac diagnosis, however, the 

large amounts of information which must be acquired and 

subsequently processed poses practical limitations.  In 

addition, the different format for presenting the recorded 

data (contour maps as opposed to scalar traces) can act as 

a barrier in clinical acceptance as practitioners are 

extremely comfortable with the traditional techniques. 

In the current study we build upon the knowledge 

gained within the realms of BSPM analysis and aim to 

identify which isointegral measurements can be used to 

effectively identify diseased subjects.  Analysis of the 

spatial distributions of the selected isointegral 

measurements also infers some information about which 

recording sites are best suited for this type of diagnosis.  

Specifically, within this work, we adopt a data driven 

approach both in terms of selecting the most appropriate 

features and developing classification models.  Based on 

this approach we examine the ability of a number of 

classification models developed through processes of 

supervised learning. 

 

2. Methods 

2.1. Study population 
 

The current study utilized a set of 192 lead BSPMs.  

The data set contained recordings from 116 subjects, 57 

of which exhibited evidence of old myocardial infarction 

(MI) and the remaining 59 were deemed to be normal.  

The data were recorded at the University of Utah,  Salt 

Lake City,  under the supervision of Professor Robert 

Lux.  The recording procedure has previously been 

described in [4].  During the acquisition process 16 

columns of 12 electrodes were placed on the subject’s 

torso.  The columns were spaced equally around the 

thoracic circumference.  Figure 1 depicts a schematic of 

the electrode array. 

Simultaneous recordings were taken from the 192 

recording sites over a number of seconds all of which 

were sampled with respect to the Wilson’s central 

terminal.  Following the recording of the data for each 

patient, the data was averaged to render one cardiac cycle.  

The recordings for each patient were further processed to 

provide QRS, STT and QRST isointegral values.  This 

provided a set of 576 (3*192) features per patient.  
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Figure 1.  Schematic of 192 electrode array used 

during the acquisition process.  Electrodes are arranged in 

16 columns of 12 electrodes equally spaced around the 

thoracic circumference.  For the sake of future discussion 

these electrodes are numbered from 1 to 16 across the top 

row (from left to right) with subsequent rows numbered 

in ascending order (e.g. row 2 = electrodes 17-32, row 3 = 

electrodes 33-48 and so on). 

 

2.2. Feature processing 
 

In the first instance the feature set was ranked based on 

its ability to discriminate two classes using signal-to-

noise ratio (SNR) defined as: 

 

)()( 2121 iiiiiSNR σσµµ +−=  (1) 

Where 1iµ  and 2iµ  are the mean values of feature i  

for the samples from classes 1 and 2, and 1iσ  and 2iσ  

are the respective standard deviations. 

The value of SNRi is correlated with the class 

distinction of interest. A high value indicates there is a 

strong correlation between the feature value and the class 

discrimination. Based on this approach a subset of 

features with high values of SNRi were selected.   

 

2.3. Methods for supervised classification 
 

Three different supervised classification models were 

investigated: Naïve Bayes (NB), Support Vector Machine 

(SVM) and Random Forest (RF). These models were 

implemented within the framework provided by the Weka 

package [5]. 

The NB classifier is based on Bayesian theorem.  In 

practice NB classifiers have been surprisingly successful 

and have often outperformed more sophisticated 

algorithms in varying practical applications [6].  

With SVM classification is performed by constructing 

an N-dimensional series of hyperplanes that optimally 

separates samples into their respective categories. 

Through the use of a kernel function, an SVM can handle 

more complex classification problems. In this study, the 

implementation of the SVM is based on the sequential 

minimal optimization algorithm developed by Platt [7]. 

Two kernel functions: polynomial and radial basis 

functions were used in the SVM-based classification 

models. 

The RF-based classifier is one of the most successful 

ensemble methods in classification. It consists of a series 

of classification trees [8]. The final classification of 

unseen entities is based on the majority votes across all 

the trees in the forest. In the given study 10 classification 

trees were deployed.   

The quality of each classifier was assessed in terms of 

four statistical indicators: overall classification accuracy 

(AC), precision (Pr), sensitivity (Se) and specificity (Sp). 

In order to estimate how well classifiers perform on 

unseen data, a 10-fold cross validation was carried out, 

i.e. the entire dataset is randomly divided into 10 subsets, 

9 folds are put together for training and the other fold is 

used as the test set. 

3. Results 

3.1.  Feature ranking 

The SNR was calculated for each feature in terms of its 

discriminative power to separate the two classes in the 

dataset: subjects with MI and those considered as normal. 

The 10 top-ranked features are listed in Table 1. 

Interestingly, there were no QRS features within the top 

10 ranked features.  Upon closer examination of the 

results of the entire ranking it was revealed that the first 

QRS feature was ranked as 199 (QRS153, SNR = 0.459).    

 

Table 1 The description of top-ranked features in terms 

of the value of SNR 

Ranking SNR Feature 

1 0.856 QRST123 

2 0.847 STT107 

3 0.847 STT123 

4 0.824 QRST139 

5 0.814 STT108 

6 0.812 QRST1 

7 0.792 STT36 

8 0.792 STT124 

9 0.789 QRST155 

10 0.789 STT139 

 

The positioning of the electrodes associated with the 

top 6 features is illustrated in Figure 2. 

 

3.2.  Supervised classification  

To explore the feasibility of using supervised 

classification models in the diagnosis of MI based on 
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BSPMs the three previously described supervised models 

of NB,  RF and SVM were evaluated. Table 2 shows the 

prediction results with the top 6 ranked features. 

Following 10 fold cross validation it was found that the 

classification accuracy for each classifier with the top 6 

features was 81.9% for NB, 82.8% for SVM and 77.6% 

for RF. This was in comparison to the same classifiers 

based on the full feature vector of 576 features attaining 

accuracies of 77.6%, 75.0% and 78.4% respectively. This 

suggests that an acceptable level of prediction results 

could be obtained by using only a small selected subset of 

features. 

 

 

Figure 2 Electrode array indicating the positioning of the 

6 selected electrodes following application of the variable 

ranking approach.  The key indicates which isointegrals 

were placed in the various locations.   

Table 2 Classification results for three classifiers using 

the 6 top-ranked features (QRST123, STT107, STT123, 

QRST139, STT108, and QRST1) based on 10-fold cross 

validation 

MI Class Normal Class 
Model 

AC 

(%) Pr 

(%) 

Se 

(%) 

Sp 

(%) 

Pr 

(%) 

Se 

(%) 

Sp 

(%) 

NB 81.9 81.0 82.5 81.4 82.8 81.4 82.5 

SVM 82.8 86.3 77.2 88.1 80.0 88.1 77.2 

RF 77.6 77.2 77.2 78.0 78.0 78.0 77.2 

 

3.3. Feature subset selection 

To investigate the effect of the number of features used 

as inputs to a classification model,  classifiers where 

exposed to ranked subsets of features ranging from the 

top 3 ranked features to the entire set of 576 features.  For 

each selected subset of features, three classifiers were 

implemented (NB, SVM and RF). Figure 3 shows the 

prediction results of the three classifiers based on varying 

sizes of ranked feature subsets.  

 

 

Figure 3 The impact of the number of isointegral 

measurements on the prediction results of three 

classifiers: (a) NB; (b) SVM; (c) RF. The classification 

accuracy is depicted on the y axis. The x-axis represents 

the number of isointegral measurements used as inputs to 

each classifier. 

Each classifier exhibits different behaviors when 

exposed to varying numbers of input features. RF-based 

classification is more sensitive to the number of features 
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than the other approaches. The prediction accuracy of RF 

is between 71.6% and 84.5%, while NB displays less 

variation in classification accuracy ranging from 77.6% to 

81.9%.  

An important observation in this study is that a high 

performance can be achieved for each prediction model 

with a small, selected subset of features. For example, 

both NB and SVM obtained the best prediction results 

when the number of features was set to 6 (81.9% for NB 

and 82.8% for SVM). RF with the 3 top-ranked features 

achieved the highest classification accuracy (84.5%).  

 

4. Discussion and conclusions 

In the current study we have investigated the 

application of supervised classification techniques and 

feature selection ranking processes to ascertain if a data 

driven approach can be effective in the selection of an 

alternative subset of recording sites without a 

compromise in classification performance. The results 

attained demonstrated that it was possible to attain 

acceptable levels of classification with an alternative lead 

set configuration.  Such a result provides an indication 

that there is indeed benefit to consider the use of a 

smaller, non standard subset of recording sites from the 

BSPM for classification without a compromise in 

classification accuracy. 

The three classification models investigated exhibited 

different levels of performance. The RF approach 

achieved the highest classification accuracy with the top 3 

features (84.5%).  The solutions based on NB had less 

variation in prediction results when the number of input 

features changed (ranging from 77.6% to 81.9%).  These 

have provided positive preliminary results and warrant 

the investigation of other supervised classification 

techniques for example Neural Networks. 

Another crucial issue that needs to be addressed is the 

impact of the number of features on the classification 

performance. As shown in Figure 3, there is no consistent 

relationship between the performance of each classifier 

and the number of selected features. This could be partly 

caused by using the same learning parameters within the 

classification models for different numbers of input 

features. The combination with other machine learning 

techniques to dynamically select the optimal learning 

parameters needs to be part of future research.  

Based on the value of SNR, a selected subset of top-

ranked features was selected as an input to each classifier. 

A deficiency of this feature selection technique is that the 

selected features could be highly correlated among 

themselves. For example, the average Pearson correlation 

value between the top three features (QRST123, STT107, 

and STT123) is 0.90. Such a high correlation indicates a 

substantial redundancy among the input features and may 

have a negative influence on prediction analysis.  

Incorporating more elaborate feature selection techniques 

such as sequential selection techniques [9] or maximum-

relevance-minimum-redundancy-based approaches [10] 

would be an important task of our future work. 
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