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Abstract 

Human heart failure is a complex syndrome that can 

be initiated by a variety of clinical conditions and 

geneticl factors. Gene expression profiling offers 

opportunities to study changes in transcriptional activity 

in heart failure samples of different etiologies. This paper 

evaluates machine and statistical learning models for 

supporting the identification of heart failure etiology 

based on gene expression data. Six supervised 

classification models were evaluated on a publicly-

available human heart failure dataset. The Naive Bayes, 

Support Vector Machines, and k-Nearest Neighbours 

achieved the most significant prediction performances. 

Using a correlation coefficient-based gene-ranking 

criterion, the impact of the number of genes on the 

prediction performance was investigated. Information 

from the top 5 genes was sufficient to accurately 

distinguish between ischemic and idiopathic samples. 

 

1. Introduction 

Human heart failure is one of the major causes of 

morbidity and mortality in most developed countries [1]. 

It can be initiated by a variety of clinical conditions and 

genetic factors, such as hypertension, myocardial 

infraction (MI), and mutations in sarcomeric proteins [2], 

[3]. Heart failure arising from different etiologies may 

involve distinct pathophysiological mechanisms, 

responses to certain pharmacological treatments and 

prognosis [4], [5]. It is expected that patients with heart 

failure caused by coronary disease have worse long-term 

outcomes than other etiology subgroups [4]. Felker et al. 

found that there was a significant interaction between 

heart failure etiology and the effect of milrinone [5]. It 

has been suggested that an individualized, etiology-based 

therapeutic approach could result in major progress in 

treating heart failure patients [6], [7]. But due to the 

complex mechanisms involved in heart failure, early and 

accurate diagnosis remains a difficult challenge [8]. 

 Recent advances in large-scale gene expression 

profiling techniques offer new opportunities to study 

human heart failure arising from different etiologies. 

Such analyses may reveal distinct etiology-specific 

genomic patterns and support the identification of 

relevant biomarkers that differentiate different heart 

failure etiologies. For example, based on the examination 

of the gene expression of 21 non-ischemic (NICM) 

cardiomyopathy samples, 10 ischemic (ICM) samples, 

and 6 normal heart samples, Kittleson et al. [9] identified 

257 genes differentially expressed in NICM and 72 genes 

significantly associated with ICM samples. Using 

statistical techniques to analyze gene expression profiles 

of samples from 7 normal and 8 failing hearts, Tan et al. 

[10] studied gene expression fingerprints of human heart 

failure. They found 103 genes (out of 6606) to be 

differentially expressed between failing and normal heart 

samples. Recently, Huang et al. [7] presented a 

comparative study of five classification techniques for 

distinguishing heart failure etiologies using two gene 

expression datasets generated at two independent 

laboratories. Using leave-one-out cross-validation, they 

found that the five statistical methods, including partial 

least squares, nearest shrunken centroids and random 

forests, showed similar prediction performances on each 

of the two datasets. 

In this study we evaluated six computational 

classification models for supporting the identification of 

human heart failure etiology based on gene expression 

data. The following questions are addressed: Can 

machine and statistical learning-based classifiers 

accurately discriminate between heart failure etiologies 

solely based on gene expression data? Can we achieve 

comparable or relatively high prediction performances 

with a smaller subset of genes? The classification 

problem was to distinguish between ischemic and 

idiopathic samples. 

The remainder of this paper is organized as follows. 

Section 2 briefly describes the dataset under study. A 

description of the prediction models and statistical 

evaluation techniques is given in Section 3. The results 

are presented in Section 4. The discussion of results and 

conclusions, together with future research, are given in 
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Section 5. 

 

2.  Data  

 A total of 59 samples, including 32 ischemic and 27 

idiopathic cardiomyopathy samples, were analyzed. The 

expression profiles of these samples were measured by 

Affymetrix Human Genome chips (HG-U133 plus 2) 

containing 54,675 gene probes. The dataset is freely 

available at the Program for Genomic Applications 

website [http://www.cardiogenomics.org], which is a 

project of the U.S National Heart, Lung and Blood 

Institute (NHLBI). 

 

3. Methods 

3.1. Machine and statistical learning 

models 

Six supervised classification models: Naive Bayes 

(NB), Support Vector Machines (SVM), Multilayer 

Perceptron (MLP), k-Nearest Neighbors (KNN), C4.5 

Decision Trees and Random Forests (RF) were evaluated. 

All these models were implemented using the Weka 

package [12]. The implementation of SVM was based on 

the sequential minimal optimization algorithm developed 

by Platt [13]. Several models with different learning 

parameters were implemented. The models reported here 

used the following learning parameters. The number of 

learning epochs for MLP was set to 500. The MLP 

models included one hidden layer with 10 neurons, and 

an output layer with 2 neurons referring to the two 

classes: ischemic and idiopathic class. For the C4.5 

algorithm, the minimum number of instances per leaf was 

equal to 2. The number of neighbors in the KNN was set 

to 5. The number of decision trees to be generated in the 

RF was equal to 10. A more detailed description of these 

learning algorithms and their parameters can be found in 

[12]. 

 

3.2. Evaluation and validation 

Given that the number of samples under study is 

limited, a leave-one-out cross-validation procedure was 

carried out to assess the quality of the prediction models. 

Each classifier was evaluated based on three statistical 

measures: precision (Pr), specificity (Sp), and sensitivity 

(Se). Permutation tests were also implemented to estimate 

the statistical significance of the prediction performances, 

i.e. we randomly reshuffled the class labels of the samples 

several times and generated 1000 permutated datasets. 

For each permutated dataset, classifiers were 

implemented again. The statistical significance was then 

established based on the number of times the permutated 

datasets produced better results than the original dataset. 

 

3.3. Gene ranking criterion 

Based on a well-known correlation coefficient-based 

ranking criterion [11], each gene, ig , was ranked in terms 

of its capacity to distinguish between classes. Let )(1 igµ  

and )(2 igµ  be the mean values of ig  for the classes 1 

and 2, )(1 igσ  and )(2 igσ  be the standard deviations of 

ig  for the classes 1 and 2, the gene ranking score, Si, can 

be calculated as: 
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 Large values of || iS indicate a stronger correlation 

between the expression of a gene, ig , and one of the 

classes under consideration. 

 

4. Results 

In order to study the effect of the number of genes on 

the classification performance, all the genes were ranked 

and a selected subset of top ranked genes were used to 

train the classifiers. Figure 1 shows the classification 

accuracy of the classifiers with different numbers of top 

ranked genes ranging from 1 to 100. 

 A closer examination of the results presented in 

Figure 1 reveals that: 

1. The impact of the number of genes on the prediction 

results is dependent on the classification model 

adopted. Some classifiers are more sensitive to the 

number of input genes than others. For example, the 

C4.5-based model exhibits a relatively large variation 

of prediction accuracy that ranges from 78.0% to 

91.5%. Moreover, there is no clear relationship 

between the number of genes and the performance of 

C4.5. In the case of NB and SVM, the number of 

genes used as inputs to the model may not have a 

significant impact on the prediction results when the 

number of input genes is greater than 5.  

2. High classification accuracy can be obtained by using 

only a small subset of genes. For example, both SVM 

and KNN achieve the best prediction accuracy 

(94.9%) when they used the top 5 genes (RPS10, 

PLN, BCL2L1, 226203_at, and 217024_x_at) as 

model inputs. This indicates that a relatively small, 

selected subset of genes may be sufficient to 

accurately distinguish between the classes studied 

here. 

3. Using the top 5 ranked genes, all the 6 classifiers can 

achieve relatively high prediction performances in 
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terms of accuracy, sensitivity and specificity, as 

shown in Table 1. Prediction accuracies between 

89% and 94% were observed. This suggests that 

these 5 genes may play a significant role in 

distinguishing between ischemic and idiopathic 

cardiomyopathy patients. Surprisingly, only the top 3 

genes, as described in Table 2, have functional 

annotations in the Gene Ontology database [14]. 

 

 

 

Figure 1 The classification accuracy (shown on Y axis) 

against the number of genes (shown on X-axis) for each 

classifier: (a) NB; (b) SVM; (c) MLP; (d) KNN; (e) C4.5; 

(f) RF 

 

To estimate the statistical significance of the proposed 

computational classification methods, a 1000-runs 

permutation test was carried out.  In 999 out of 1000 

permutated datasets, the results were significantly worse 

than the results obtained using the original data in terms 

of Ac, Se, and Sp. For example, when implementing the 

permutation test for the NB classifier with the top 5 

genes, the obtained average values of Ac (48.9%, for 

Ischemic Class) were significantly lower than the results 

shown in Table 1 (p = 0.001), which indicates that the 

high classification accuracy values shown in Table 1 are 

unlikely to have been obtained by chance.  Similar 

predictive responses were obtained from the permutation 

tests for the other classifiers. 

 

Table 1 Prediction results for different classifiers using 

leave-one-out cross validation with the top 5 genes: 

RPS10, PLN, BCL2L1, 226203_at, and 217024_x_at. 

Ischemic Class Idiopathic Class 
Model 

Ac 

(%) Pr 

(%) 

Se 

(%) 

Sp 

(%) 

Pr 

(%) 

Se 

(%) 

Sp 

(%) 

NB 93.2 91.2 96.9 88.9 96.0 88.9 96.9 

SVM 94.9 91.4 100 88.9 100 88.9 100 

MLP 89.8 90.6 90.6 88.9 88.9 88.9 90.6 

KNN 94.9 91.4 100 88.9 100 88.9 100 

C4.5 91.5 90.9 93.8 88.9 92.3 88.9 93.8 

RF 89.8 88.2 93.8 85.2 92.0 85.2 93.8 

 

Table 2 Description of top 3 genes. Biological process 

annotations for each gene were obtained with GenNav 

tool (http://mor.nlm.nih.gov/perl/gennav.pl) 

Rank 
Ranking 

Score 

Gene 

Symbol 

Biological process 

annotations 

1 1.09 RPS10 • Protein biosynthesis 

2 1.05 PLN 
• Muscle contraction 

• Circulation 

3 1.01 BCL2L1 

• Anti-apoptosis 

• Negative regulation of 

survival gene product 

activity 

• Apoptotic mitochondrial 

changes 

   

5. Discussion and conclusions 

Previous research has shown that the cause of heart 

failure may affect the response to drug treatment and 

long-term prognosis [6]. Based on a publicly-available 

heart failure gene expression dataset, this paper evaluated 

machine and statistical predictive models for supporting 

the identification of heart failure etiology. The predictive 

performances of 6 different supervised classification 
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models were compared. NB, SVM and KNN achieved the 

most significant prediction performances (above 94% of 

classification accuracy). Using a correlation coefficient-

based gene ranking criterion, the influence of the number 

of genes on the predictive performances was investigated. 

The results indicate that by incorporating only the top 5 

genes, all the 6 classification models may achieve 

relatively high prediction performances with 

classification accuracies ranging from 90% to 95.9%. The 

continual increase of the number of genes does not 

significantly contribute to the improvement of 

classification performance, especially in the case of NB 

and SVM-based models. 

The gene-ranking criterion used in this paper is by no 

means the most optimal technique to estimate gene 

relevance. The application of other feature ranking 

techniques, such as F-statistics [7], deserves further 

investigation. However, this study demonstrated that it is 

feasible to detect a small set of top-ranked genes that can 

accurately distinguish between heart failure classes. Also 

these genes may motivate additional computational and 

experimental studies to assess their relevance in heart 

failure pathways and as potential drug targets. The 

application of more advanced gene ranking techniques, 

such as the maximum-relevance-minimum-redundancy-

based gene selection method, [15] is an important task of 

future research. 

The techniques assessed in this paper, as well as future 

investigations, will contribute to a European Union Sixth 

Framework Programme (FP6) project, which aims to 

detect potential drug targets relevant to heart failure and 

atherosclerosis.  
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