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Abstract 

Many different techniques have been proposed to 

compute motion fields on Tagged MR imaging. However, 

most of them require tags segmentation or endo-

epicardial contours segmentation.  

Automatic estimation of the myocardial motion field 

was extracted using a consecutive non-rigid registration 

algorithm based on a semilocal Bspline parametric 

model. The sequence was also represented in the Bspline 

space using this framework to construct the 

multiresolution pyramid within the optimization process. 

Validation was performed on sequences from 5 healthy 

volunteers comparing the estimated trajectories with the 

manual tracking provided by an expert. Results were also 

compared to HARP analysis. Subpixel accuracy was 

obtained , and results were superior in all cases to HARP 

analysis.  

 

1. Introduction 

Automatic cardiac motion analysis constitutes an 

important aid for the quantification of the elasticity and 

contractility properties of the myocardium. Localized 

regions with movement abnormalities are related to the 

existence of many different cardiovascular diseases. 

Magnetic resonance imaging (CINE-sequences and 

tagged MRI), is nowadays the reference modality to study 

the regional myocardial function. Despite the efforts of 

the medical imaging community, subjective interpretation  

is still the method of reference in clinical practice. The 

subjectivity of this approach may induce important 

disagreements on regional analysis among medical 

experts and centres, that may be overcome using 

quantitative methodologies.  

The usefulness of MR tagging to assess  regional 

myocardial deformation has been widely demonstrated[1, 

2]. Myocardial tagging was first addressed by Zerhouni et 

al. [3]and Axel and Dougherty in 1989[4]. This technique 

use spin tagging concepts to produce noninvasive markers 

in the myocardial tissue that persist during at least part of 

the cardiac cycle. The tagging process is based on 

modulating the longitudinal magnetization of the tissue 

right before the sequence of images is acquired. SPatial 

Modulation of Magnetization (SPAMM) is the most 

common technique used to produce sinusoidal tag 

patterns [4]. Different approaches  have been developed 

to compensate for the tag fading using two 

complementary SPAMM sequences (CSPAMM) [5]. 

Many different techniques have been proposed to 

compute motion fields on Tagged MR imaging. Some 

methods combine image feature extraction (myocardial 

borders and tags, with deformable and mechanical 

models[6-9]. The main drawback of these methods is that 

the computed motion strongly depends on a proper 

segmentation of the myocardial borders and tags a 

difficult task on tagged MR sequences due to signal-to-

noise ratio the data due to its poor. Prior works using 

nonrigid registration have also been recently applied to 

tagged MR studies to compute cardiac motion [10]. 

However, most of these methods require intensive user 

interaction, such as supervision of the tags segmentation 

or of the endo-epicardial contours segmentation. 

And automatic and efficient approach has been 

recently proposed tracking the phase shifts on the 

modulated SPAMM images (Harmonic phase imaging 

(HARP) [11]). This method isolates the spectral peaks 

corresponding to the tag pattern in the frequency domain. 

Displacement fields are computed automatically spectral 

optical flow techniques that track the phase tagged in the 

myocardial tissue. 

Our work presents a new approach to estimate motion 

from Tagged MR sequences using non-rigid registration 

techniques without requiring any segmentation and 

providing very good accuracy. The article is organized as 

follows. In the next section, we present the method used 

to compute the dense myocardial motion field the 

imaging procedure and the validation methodology. To 

end we present the results and the discussion and 

conclusions in the final section. 
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2. Methods 

Myocardial motion estimation was computed using a 

non-rigid registration algorithm to obtain inter-frame 

displacements. The proposed methodology does not 

require any user interaction or image segmentation, so 

therefore it is fully automatic. The method is validated 

with respect to the manual tracking of tag intersections by 

an expert in data from healthy volunteers. Results are also 

compared with respect to standard HARP processing.  

 

2.1. Proposed algorithm 

Given an image sequence f(t,x), we want to estimate a 

dense displacement field g(t,x) that represents the 

displacement field over the whole sequence. The 

movement is represented with respect to the first frame of 

the sequence t=t0. We express gt(x)=g(t, x) as a series of 

transformations between consecutive pairs of images  

found through independent non-rigid registration 

processes.  

 

gt (x) =g’t (xt-1) where xt-1=gt-1(x)   and   g0(x) =x     (1) 

 

where  t is the temporal axis in frames (T being the total 

number of frames) and   x=(x1,x2). The non-rigid 

registration process is formulated as an optimization 

procedure that minimizes a similitude criterion E to find 

the best suitable transformation to find the corresponding 

points from a test image into a reference image. Figure 1 

shows the scheme of the independent non-rigid 

registration processes. E is defined as the sum of squared 

differences between consecutive frames. The 

transformation model used in this process g’t  is defined as 

a linear combination of Bspline basis functions, located in 

a rectangular grid [12-14]: 

 

    g’t(x) = Σ cj βr(x/h-j)    (2) 

                                                                                               

The scale parameter h determines the space between the 

grid knots and, therefore, the number of parameters cj and 

the smoothness of the solution.   

The optimization strategy encompasses a 

multiresolution process solved by using a gradient 

descent method. We generate a continuous version of the 

discrete image f(t, x) by spline interpolation; providing an 

excellent framework to find a subpixel solution and to 

compute the spatial derivatives analytically and, 

therefore, the criterion gradient. Speed and robustness are 

guaranteed using a multiresolution approach both in the 

image and transformation space, creating a pyramid 

optimal in the L2-sense taking advantage of the B-spline 

representation [15]. 
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Figure 1: Interframe displacements are obtained applying 

a non-rigid registration scheme to consecutive pairs of 

images. This problem is formulated as an optimization 

process that minimizes a similitude criterion E.  

2.2 Imaging 

Tagged MR images were acquired using an optimized 

tagging sequence on a Philips Intera 1.5 T (Philips 

Medical Systems, The Netherlands) and with a five 

elements phased-array coil dedicated to cardiac imaging.. 

Five healthy volunteers were examined acquiring short 

axis images with a frame rate of 13 frames per cycle. The 

tagging sequence used was an enhanced version of the 

free breathing SPAMM sequence provided by the 

manufacturer for our Philips Intera scanner [16]. The 

proposed sequence makes use of artesian k-space filling, 

turbo gradient echo (GE) pulses and both ECG and 

respiration gating.  Main parameters of the sequence are: 

matrix = 192*192 (phase*frequency), 4 NSA, rectangular 

FOV = 100%, acquisition percentage = 100%, TE = 1.9 

ms, TR = shortest (5.5 ms for 80 bpm), flip angle = 13º,  

turbo factor = 8, slice thickness = 8 mm, orthogonal grid 

lines spacing = 8 mm, respiratory synchronization = 

gating, acquisition time = 1’12’’, 13 phases for 80 bpm. 

The main advantage of this sequence is that the tag 

contrast is very well maintained through the whole 

sequence (see figure 2, frame 1 and frame 12) [16]. 

 

2.3. Data analysis 

All the sequences were analyzed using the Non-rigid 

registration motion estimation using quadratic Bsplines 

and h=1cm knot spacing. HARP analysis [11, 17] was 

also conducted in all the sequences using the 

implementation described in [18] as global method. The 

HARP implementation was tested in an artificial 

sequence of a short axis image with perfect sinusoidal 
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modulation confirming the right performance.  

In order to set a gold standard tags intersections (24 

points for every sequence) were manually tracked by an 

expert. Estimated motion trajectories computed with the 

proposed method and with HARP were compared in 

terms of Euclidean distance. The mean error with respect 

to the manual tracings along the whole sequence was 

calculated for every sequence and method. 

 

3. Results 

Figure 1 shows the results obtained using the proposed 

non-rigid registration approach. Green points correspond 

to the manually tracked expert points and red points to the 

algorithm outcome. The performance of the method is 

very good along the whole sequence.  

 

    
 FRAME 1  FRAME 4  

   
 FRAME 7  FRAME 12 

Figure 2: Estimation of points trajectories using the non-

rigid registration method versus the expert manual 

tracking. Manually outlined points shown in green. Non 

rigid registration results shown in red.  

 

Quantitative results of motion estimations using the 

proposed approach resulted in a mean error of less than 

1mm (~0.76 pixels) for all the analyzed sequences. 

However, HARP analysis provided worse results in all 

cases (2.5 pixels ~ 3 mm).   Table 1 shows the results in 

pixels for all the sequences analyzed with both methods.  

 

 

Table 1: Mean distance errors (in pixels) between the 

trajectories of the 24 delineated points and the 

automatically tracked results using the proposed non-rigid 

registration method and HARP.  

 

Method S 1 S 2 S 3 S4 S5 

Non-rigid 

registration  
0.75 0.81 0.76 0.77 0.71 

HARP 2.75 2.60 3.14 1.8 2.45 

 

4. Discussion and conclusions 

This work has presented a new approach to compute 

motion trajectories from Tagged MR imaging without any 

user interaction using non-rigid registration techniques. In 

comparison to previous methods [10] proposed interframe 

displacements are computed using a non-rigid registration 

method that uses the standard sum of square difference 

metric. The use of this metric assumes that the interframe 

time intervals are short in comparison to the T1 tissue 

recovery [19].  

The results of the proposed method have shown very 

good accuracy along the whole sequence. On the other 

hand HARP did not provide as good results along the 

whole sequence. HARP results taking into account only 

the first few phases were reasonable, and they were worse 

as tag contrast degraded. As a result the non-rigid 

registration method showed a more robust behaviour as it 

considers all the image information and not only the 

phase information (much more sensitive to artefacts). The  

semi-local transformation model and the global criterion 

also set a good framework to balance local 

transformations with global shape. The multiresolution 

optimization strategy and the continuous representation of 

the sequences also contribute to improve robustness.  

As a main conclusion we could state that fully 

automatic Tagged MR image processing is feasible and 

accurate using non-rigid registration techniques based on 

the computation interframe displacements. Subpixel 

accuracy is achieved thanks to the Bspline sequence 

representation and the robustness of the technique. 
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