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Abstract 

The abnormal intra-QRS potentials (AIQPs) from a 

signal-averaged electrocardiogram (SAECG) have been 

proposed to indicate the risk of ventricular arrhythmias. 

This study developed a new method based on the 

prediction error filtering for the extraction of AIQPs. Two 

sequential SAECGs with the same noise level were used 

as desired and reference input signals to estimate the 

normal QRS and AIQPs. 

The simulation results showed that the prediction error 

filter can effectively decorrelate the AIQPs (simulated as 

an autoregressive stochastic process) from the normal 

QRS complex under an extremely poor signal-to-noise 

ratio. The AIQPs of VT patients were significantly greater 

than those of normal subjects in leads X and Y 

(p<0.05).This work demonstrated that the AIQPs 

extracted by the prediction error filter were useful for the 

evaluation of the risk of ventricular arrhythmias. 

 

1. Introduction 

The ventricular late potentials (VLPs) recorded from 

signal averaged electrocardiogram (SAECG) have been 

associated with a reentry substrate for ventricular 

arrhythmias [1,2]. Although VLPs were initiated from 

within the normal QRS interval, they are actually 

characterized by the signal portion that outlasts this 

interval. Time-domain SAECG parameters, including 

fQRSD, LAS40 and RMS40, have been widely employed 

to quantify VLPs. However, the major limitations of 

time-domain analysis are an incomplete characterization 

of reentrant activity [3] and the poor accuracy of positive 

prediction [4].  

The VLPs detection focuses on the evaluation of low-

amplitude and high-frequency components at the terminal 

QRS complex. However, certain part of VLPs can be 

distributed over entire QRS interval. These VLPs have 

the same high-frequency characteristics as the large-

amplitude QRS complex and its detection is relatively 

difficult. Moreover, an extremely poor signal-noise-ratio 

(SNR) (low-amplitude VLPs compared with large QRS 

wave) and the noise interference can limit the VLPs 

detection. 

In addition to VLPs, Gomis et al. [5] and Lander et al. 

[6] have proposed the abnormal intra-QRS potentials 

(AIQPs) as a new index to evaluate the risk of ventricular 

arrhythmias. Although the formal pathophysiological 

bases for AIQPs have not yet been well established, 

numerous investigations have suggested that the activity 

of a reentry substrate of ventricular arrhythmias may be 

completely contained within the normal duration of the 

QRS
 
[7]. The analysis of the AIQPs allows a potential 

pathophysiological signal that is completely within the 

normal QRS interval to be measured.  

The AIQPs were assumed as the transient, 

unpredictable part of the QRS complex. Gomis et al. [5] 

developed an ARMA model built in the discrete cosine 

transform (DCT) domain to estimate the normal QRS 

components and analyze the AIQPs by the modeling 

residuals. In the DCT domain, most ECG energy is 

concentrated in the low-frequency band. This model can 

use a low order to estimate ECG signals accurately. 

However the current parametric modeling is in the 

discrete cosine transform domain (i.e. frequency domain) 

to estimate the AIQPs, hence the transient and 

unpredictable features in time domain may not be 

accurately extracted. The purpose of this study is to 

evaluate the AIQPs directly in the time domain based on 

a prediction error filter.  

2. Methods 

2.1. High-resolution ECG recording 

There were 50 normal Taiwanese (N) and 30 sustained 

ventricular tachycardia (VT) patients were recruited in 

this study.  High-resolution ECGs were recorded using a 

commercially available Simens-Elema Megacart
®

 

machine with a bipolar, orthogonal X, Y and Z lead 

system. The high-resolution ECGs were recorded at rest 

in a supine position using a commercially available 

Simens-Elema Megacart
®
 machine. A bipolar, orthogonal 

X, Y and Z lead system was used. A sample of 10 min 

raw ECG with 12-bit resolution at 2 kHz was stored on 
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computer hard disk for subsequent analysis. The time-

domain SAECG analysis under various RMS noise levels 

was performed offline. 

2.2. Signal averaging 

Offline signal averaging procedure in our program 

followed the standards of 1991 ESC, AHA and ACC 

Task Force [2]. Each incoming heartbeat was aligned 

with the template waveform. An alignment was accepted 

when the correlation coefficient is larger than 0.98. The 

template was then updated every eight beats averaged to 

prevent any possible corruption from proliferation. Each 

averaged ECG of lead X, Y and Z was filtered with a 

four-pole 40-250 Hz high-pass Butterworth filter working 

with the bi-directional mode. The filtered signal-averaged 

vector magnitude (VM), which is defined as the filtered 

QRS complex, was calculated as the square root of 

( 222 ZYX ++ ).  

A 40 ms section where the root-mean-square voltage 

was minimum in the ST segment of the VM was selected 

as the noise sample for the evaluation of the noise level. 

The onset and offset of SAECG were defined as the 

midpoint of the 5-ms segment in which the mean voltage 

exceeded the mean noise level plus three times the 

standard deviation of the noise sample. 

The final noise level of SAECG was set at 0.7 µV. 

Two successive SAECGs with the same noise level were 

performed for the follow-up prediction error filtering. 

2.3. Prediction error filtering 

Figure 1 shows the block diagram of the prediction 

error filtering for the evaluation of the AIQPs.  The delay 

time T represents the time of one cardiac cycle. The 

design of a finite-impulse-response Wiener filter, )(zW , 

is to produce the minimum mean-square estimate of the 

desired input )(nd  by filtering a set of observations of a 

statistically related reference input )(nx .  

This study introduced two successive SAECGs to be 

desired and reference input signals respectively.  Each 

SAECG was assumed to contain two main parts – (1) the 

normal QRS, )(nS i , and (2) the AIQPs, )(nvi , 2,1=i . 

The normal QRS are assumed to be uncorrelated with the 

AIQPs. Two successive AIQPs are also assumed to be 

uncorrelated with each other. Because two successive 

normal QRS are highly correlated, we can try to use the 

wiener filter with a low order to separate the normal QRS 

and the AIQPs in the desired input SAECG. 

The normal QRS can be estimated by the output of the 

pth-order filter. That is, 

∑
=

−=⊗=
p

i

lnxlwnwnxny

1

)()()()()(  (1) 

 

Figure 1. Block diagram of the prediction error filtering 

for the evaluation of the abnormal intra-QRS potentials. 

 

where ⊗  is the symbol of the convolution sum, and )(lw  

is the l th filter coefficient. The Wiener filter design 

problem requires that we find the filter coefficients, )(lw , 

that minimize the mean-square error 

})()({})({
22

nyndEneE −==ξ  (2) 

The optimal filter coefficients can be derived from the 

Wiener-Hopf equations [8] as follows. 

dxxo rRw
1−=  (3) 

where xR  is the autocorrelation matrix of the reference 

input )(nx , ow  is the vector of the optimal filter 

coefficients, and dxr  is the vector of cross-correlations 

between the desired input )(nd  and the reference input 

)(nx . 

When the prediction error filter is optimized in the 

minimum mean-square error sense, the filtering output 

can be evaluated as 

)()()()()( 22 nwnvnwnsny oo ⊗+⊗= , (4) 

where )()(2 nwns o⊗  is the optimal estimation of )(1 ns , 

and )()(2 nwnv o⊗  is the interference of the estimation. 

The filtering error can also be derived as 

)()()( nyndne −=  

)()]()()([ 121 nvnwnsns o +⊗−=  

)()(2 nwnv o⊗− , (5) 

where )()()( 21 nwnsns o⊗−  and )()(2 nwnv o⊗−  both 

are the interferences for the estimation of the AIQPs 

( )(1 nv ).  

The average power of the filtering error to lie in 
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(b) 

Figure 2. Simulation results without AIQPs, (a) the 

desired and reference inputs, and (b) filtering output and 

error. The dotted line is the original normal QRS ( )(1 ns ) 

in the plot of )(ny . 

 

between onset and offset of QRS complex is used to 

quantify the AIQPs in leads X, Y and Z (AIQP_l 

represents AIQPs in lead l, l=X, Y or Z).  

2.4. Statistical analysis 

Data were presented as mean ± standard deviation 

(SD). All statistical analyses were done with Statistical 

Package for the Social Sciences
®

 (SPSS). Normal 

distribution tests were performed on all quantitative 

variables [9]. Statistical significance was defined as p 

values less than 0.05. Comparisons between pairwise 

groups were performed using a Student t test for normally 

distributed continuous variables. Levene’s test was used 

to check the homogeneity of variance between variables. 

The Mann Whitney U and Wilcoxon Rank Sum tests 

were used for those non-normally distributed [10].  

3. Results 

3.1. Simulation results 

 
(a) 

 
(b) 

Figure 3. Simulation results with AIQPs, (a) the desired 

and reference inputs, and (b) the filtering output and error. 

The dotted lines are the original normal QRS ( )(1 ns ) in 

the plot of )(ny , and the original AIQPs ( )(1 nv ) in the 

plot of )(ne  separately. 

 

A simulation experiment was performed to determine 

whether the prediction error filtering could extract the 

transient and unpredictable AIQPs. Figure 1(a) shows two 

successive SAECG without AIQPs. Their normal QRS 

parts with a peak-to-peak range about 1200 µV are highly 

correlated ( )1(1.0)()( 221 −×−= nsnsns ). The optimal 

filtering output and error are shown in Figure 1(b). This 

study selected a 20th-order filter for analyzing the AIQPs 

of all SAECGs. Because of the absence of the AIQPs, the 

normal QRS )(1 ns  can be exactly estimated and no 

AIQPs presented in the filtering error.  

Figure 2(a) shows two successive SAECG with AIQPs. 

Their normal QRS parts are same as those in Figure 1(a). 

An autoregressive stochastic process was used to simuate 

the AIQPs as follow. 

)()1(8.0)( 11 nunvnv =−×−  

)()( 12 Tnvnv −=  (6) 
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where )(nu  is drawn from a white-noise process of mean 

zero and variance one, and T  represents the time of one 

cardiac cycle. The SNR is only about -37 dB.   

Figure 2(b) shows that the normal QRS )(1 ns  can also 

be exactly estimated by the filtering output )(ny , and the 

filtering error can estimate the AIQPs but including 

certain interferences. 

3.2. Results of AIQPs analyses 

Table 1 shows the results of AIQPs analyses of 

SAECG. The mean AIQPs from leads X and Y of the VT 

group significantly exceeded that of the normal group (p 

< 0.05). Although the mean AIQPs from lead Z of the VT 

group was larger than that of the normal group, the 

difference was not statistically significant. 

Table 1: Summary of the AIQPs analyses 

AIQP parameters (µV) 

Subjects AIQP_X AIQP_Y AIQP_Z 

VT 39 ± 36 45 ± 44 51 ± 50 

Normal 18 ± 9 
*
    23 ± 18 

*
 36 ± 32 

NS
 

The equivalent non-parametric Mann Whitney U and 

Wilcoxon Ranked Sum tests were performed to compare 

the means between VT and VPC or Normal groups. 

Abbreviations: NS, not significant (p>0.05); *, p < 0.05; 

AIQP_l, abnormal intra-QRS potentials from lead l, 

where l = X, Y or Z).  

4. Discussion and conclusions 

This study proposed a new method based on the 

prediction error filtering to evaluate the AIQPs. Two 

successive SAECGs were adopted as the inputs of the 

prediction error filters. Because two successive normal 

QRS were highly correlated, the normal QRS can be 

estimated from the filtering output and then the filtering 

error can used to estimate the AIQPs. The simulation 

results also showed the performance of the proposed 

prediction error filter with and without the presence of the 

AIQPs.  

This work demonstrated the AIQPs extracted from the 

prediction error filtering are useful for the evaluation of 

the risk of ventricular arrhythmias. However, the 

extracted AIQPs from the filtering error still included 

certain interferences. This may affect the clinically 

diagnostic performance. 
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