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Abstract 

 
The Medilog ADAPT analysis algorithm uses multi-

layer perceptron artificial neural networks to estimate 

the Bayesian a posteriori probability that each detected 

QRS complex is supraventricular or ventricular given 

measurements such as the QRS width and height, etc. It is 

shown that the paradigm used in Medilog ADAPT 

improves on the standard paradigm for neural network 

classifiers in two important aspects. To solve the problem 

of missing data the features presented to the neural net-

work's inputs are first converted to probability estimates, 

so that when a feature cannot be measured it is assigned 

a value of 0.5. Then during neural network training the 

optimum neural network is the one that generates an 

output probability of 0.5 when its inputs are all assigned 

a value of 0.5. It is shown that using this neural network 

Medilog ADAPT is 99.9% accurate when tested against a 

database of eight 3-channel 24-hour ECG recordings. 

 
 

1.   Introduction 
 
 The Medilog ADAPT analysis algorithm uses multi-

layer perceptron (MLP) neural networks to estimate the 

Bayesian a posteriori probability that each detected QRS 

complex is supraventricular, N, or ventricular, V, given 

measurements such as the QRS width and height, etc [1].  

 The standard paradigm for neural network beat class-

ification comprises a pre-processing stage of feature 

extraction and normalisation, a classification stage using 

an 'optimum' MLP architecture and weights set, and a 

post-processing stage to resolve any discrepancies 

between the timings and/or classifications of QRS 

complexes detected across more than one channel. Within 

this paradigm the optimum MLP architecture and weights 

set is determined during a supervised learning phase in 

conjunction with a criterion for when to stop learning – 

namely the number of passes through the training set that 

minimises the mean squared error (m.s.e.) between the 

desired and actual MLP output values on a cross-

validation set. It has been shown that MLPs trained in 

this way estimate Bayesian a posteriori probabilities [2]: 

 

p(Ck | x)  = p(x | Ck) p(Ck) 

 ∑ =

K  

1  i  
p(x | Ci) p(Ci) 

 

where x is a vector of input features x1,x2,…,xn, p(x | Ck) 

is the class-conditional probability of the feature vector x 

given class Ck, p(Ck) is the a priori probability of class k, 

and K is the total number of classes. For the classification 

problem presented in this paper, K = 2 (i.e. N or V) and 

therefore the MLP requires only a single output unit since 

p(V|x) = 1 – p(N|x). Each QRS complex is then classified 

as N if p(N|x) > 0.5 or V if p(N|x) < 0.5. 

Multiple training runs are performed for each MLP 

architecture using a different random initialisation of the 

weights on each run. Once training is complete the 

optimum MLP is selected using one of two standard 

selection criteria – namely the MLP that has the smallest 

m.s.e., or lowest classification error rate, on the cross-

validation set. The classification performance of this 

MLP is then evaluated on an independent test set of 

patients whose data are not included in the training or 

cross-validation sets. 

The paradigm used in Medilog ADAPT improves on 

the standard paradigm in two important aspects. First, as 

a final step in the pre-processing stage each feature is 

converted to a probability that the QRS complex is 

supraventricular or ventricular on the basis of this feature 

alone. An advantage of this is that in the standard 

paradigm it is not clear what value to assign to an MLP 

input unit when a measurement is missing or cannot be 

made – for example, due to noise or artefact – whereas in 

the new paradigm such an input unit is assigned a value 

of 0.5 to represent the fact that since the feature could not 

be measured nothing can be said about the QRS complex 

on the basis of the missing feature. Furthermore, in the 

extreme situation of a QRS complex on which no 

measurements are made all the MLP input units would be 

assigned a value of 0.5, from which it follows that a well 

trained neural network should generate an output value of 

0.5. This leads to the second improvement over the 

standard paradigm, which is that the selection criterion 
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for the optimum MLP is the one whose output value is 

0.5 when its input units are all assigned a value of 0.5. It 

is demonstrated that an MLP chosen using this criterion 

exhibits superior classification performance compared to 

MLPs chosen using the standard selection criteria. 

 

2. Methods 
 

ECGs in which each beat has been correctly labelled 

as N or V were digitally filtered to eliminate or reduce 

low frequency baseline wander, 50 or 60 Hz mains inter-

ference, and high frequency electromyographic (EMG) 

noise. Then for each beat features such as the QRS width 

and height etc. were measured, and each feature was 

normalised with respect to the expected value of that 

feature for a supraventricular beat. A look-up table [1] 

was then used to convert each normalised feature, xi, to a 

probability estimate, p(N|xi). This is the probability that 

the QRS complex is supraventricular given this feature. 

In this way each QRS complex is represented by a vector 

of single-feature probability estimates, p(N|x1), p(N|x2), 

…,p(N|xn). In total 440,888 vectors were generated for N 

beats and 42,426 vectors for V beats. This is more than 

ten times as many N vectors as V vectors, and using all 

these data to train a neural network would cause the latter 

to learn that 'most beats are normal'. Whilst this is true for 

this data set and for many ECGs in general, it is not 

universally true, and a neural network which has learned 

to bias its decisions in favour of N beats will perform 

poorly in some instances. To avoid this the neural 

network must be taught that the a priori probabilities that 

a beat is N or V are equal, i.e. p(N) = p(V) = 0.5, and this 

is achieved by means of a balanced training set 

containing equal numbers of N and V vectors. Such a 

training set was created by randomly selecting 42,426 of 

the 440,888 N vectors plus all of the 42,426 V vectors. A 

large number of neural networks were then trained to 

determine the following parameters: 

 

- the best subset of features to use as inputs to the neural 

network (feature selection); 

 

- the optimum neural network architecture, or more 

specifically how many hidden units to use since the 

number of input units is determined during feature 

selection and the number of output units is one for a 

two class problem; 

 

- when to stop training. 

 

More features, more hidden units, and longer training 

times enable the neural network to learn the data in its 

training set with greater accuracy, but risks over fitting 

the neural network to these data with the result that it 

performs poorly on new data once training is complete 

and the neural network is put into use. To prevent this 

and thereby ensure good generalisation, only half the data 

(i.e. 21,213 N vectors and 21,213 V vectors) were used 

for training and the other half were retained in a separate 

cross-validation set. After each pass through the training 

set, training was suspended and each vector in the cross-

validation set was presented to the neural network's input 

units. The value produced at the neural network's output 

unit in response to each vector was compared with the 

desired output value, which is '1' for N vectors and '0' for 

V vectors. From this the m.s.e. between the desired and 

actual output values was calculated over the entire cross-

validation set. As described earlier, the criterion for when 

to stop training was the number of passes through the 

training set that minimised the m.s.e. on the cross-

validation set. By training a large number of neural 

networks using different subsets of input features and 

different numbers of hidden units an optimum neural 

network architecture and weights set can then be selected 

using either of two standard selection criteria, namely the 

neural network that has either the smallest m.s.e. or low-

est classification error rate on the cross-validation set. 

MLP neural networks with architectures of 6 to 8 input 

units (and therefore input features), 4 to 10 hidden units 

and a single output unit were trained using the error back-

propagation algorithm [3] with values for the learning 

rate, µ, of 0.01 and momentum term, η, of 0.6. Linear 

activation functions were used in the MLP's input units 

and sigmoidal activation functions in its hidden and 

output units. The minimum m.s.e. on the cross-validation 

set was used as the criterion for when to stop training, 

and to account for the possibility of local minima in error 

space each MLP architecture was trained several times 

using a different random initialisation of the weights set 

on each occasion. This was then repeated using the cross-

validation set as the training set and vice versa. A total of 

720 MLPs were trained and from these the two 'optimum' 

MLP architectures and weights sets were identified using 

the standard selection criteria described earlier. A third 

MLP for which input values of 0.5 generate an output 

value of 0.5 was also identified, and the classification 

performance of these three MLPs was compared. 

 

3. Results 
 

The scatterplot in Figure 1 shows the m.s.e. on the 

cross-validation set (x-axis) versus the classification error 

rate on the cross-validation set, as a percentage, (y-axis) 

for each of the 720 MLPs. The arrows indicate the MLPs 

which have the smallest m.s.e. or lowest classification 

error rate on the cross-validation set (marked with an 'X'), 

along with the MLPs for which input values of 0.5 

generate an output value of 0.5 (marked with an 'O'). The 

details of these four MLPs are presented in Table 1. 
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Table 1. Details of the four MLPs identified in Figure 1. 

 

MLP architecture m.s.e. classification 

error rate 

(a) 8-9-1 0.088980 5.35% 

(b) 8-9-1 0.089109 5.30% 

(c) 7-9-1 0.097795 5.90% 

(d) 8-6-1 0.108115 6.52% 

 

 

Of the two MLPs (c) and (d) for which input values of 

0.5 generate an output value of 0.5, MLP (d) was selected 

for further comparison against MLPs (a) and (b) since all 

three use the same set of eight input features. These three 

MLPs were compared by plugging each one into Medilog 

ADAPT and evaluating its classification performance on 

an independent test set of eight 3-channel 24-hour ECG 

recordings from patients whose data are not included in 

the training or cross-validation sets. These ECGs contain 

over 770,000 QRS complexes in total, of which almost 

49,000 are ventricular. 'Hands off' testing was performed 

in accordance with ANSI/AAMI EC38:1998 [4] and 

ANSI/AAMI EC57:1998 [5] and the results are presented 

in Tables 2–4. In these tables Nn is the number of 

correctly classified N beats, Nv is the number of N beats 

that were incorrectly classified as V, Vn is the number of 

V beats that were incorrectly classified as N, and Vv is 

the number of correctly classified V beats. The values for 

VEB detection sensitivity (Se) and positive predictivity 

(+P) are given as percentages. 

 The results are summarised by the gross and average 

statistics for VEB Se and VEB +P in Tables 2–4, which 

show that the performance of the MLP for which input 

values of 0.5 generate an output value of 0.5 is superior to 

that of either MLP selected using the standard criteria and 

uses fewer hidden units. The accuracy of the MLP in 

Table 4 can be calculated using the totals for Nn, Nv, Vn 

and Vv in conjunction with the following formula [6]: 

 
Accuracy = (Nn+Vv) / (Nn+Nv+Vn+Vv) 

 
which yields: 

 
(722315+47760) / (722315+266+836+47760)  = 99.9% 
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Figure 1. The m.s.e. on the cross-validation set (x-axis) versus the classification error rate on 

the cross-validation set, as a percentage, (y-axis) for 720 MLPs. See text for details. 
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Table 2. Classification results for the MLP with the 

smallest m.s.e. on the cross-validation set. 
 

         Nn   Nv   Vn   Vv  VEB Se VEB +P 

ECG1   60718  94   34 19704  99.62  98.73 

ECG2   95386 108  135  9044  98.51  98.77 

ECG3  105646  27   80  1694  95.38  93.75 

ECG4  106718  10  121  2569  95.47  99.57 

ECG5  111901  85 1323 11412  88.24  93.98 

ECG6   68322 107   93  1838  95.09  93.39 

ECG7   75933   7   47   207  81.50  95.83 

ECG8   97514   0    1   148  99.33  98.67 

Total 722138 438 1834 46616 

Gross                        95.73  97.16 

Average                      94.14  96.59 

 

Table 3. Classification results for the MLP with the low- 

est classification error rate on the cross-validation set. 
 

         Nn   Nv   Vn   Vv  VEB Se VEB +P 

ECG1   60699 115   18 19720  99.70  98.63 

ECG2   95385 109  131  9047  98.54  98.74 

ECG3  105647  25   76  1699  95.66  95.13 

ECG4  106714  14  113  2577  95.76  99.42 

ECG5  111786 199 1398 11056  85.49  93.02 

ECG6   68328 101   96  1836  94.98  93.58 

ECG7   75937   3   53   201  79.13  98.05 

ECG8   97514   0    1   148  99.33  98.01 

Total 722010  566 1886 46284 
Gross                        95.05  96.96 
Average                      93.58  96.82 

 

Table 4. Classification results for the MLP for which 

input values of 0.5 generate an output value of 0.5. 
 

         Nn    Nv  Vn   Vv  VEB Se VEB +P 

ECG1   60749   66  78 19661  99.40  98.84 

ECG2   95478   16  75  9105  99.17  99.78 

ECG3  105659   13  24  1750  98.54  94.44 
ECG4  106710   18  32  2659  98.81  99.22 

ECG5  111961   28 546 12331  95.35  94.47 

ECG6   68308  121  74  1858  96.12  92.35 

ECG7   75936    4   6   248  97.64  97.64 

ECG8   97514    0   1   148  99.33  98.01 

Total 722315  266 836 47760 
Gross                        98.08  97.43 
Average                      98.04  96.84 

 
4.   Discussion and conclusions 
 

 The paradigm used in Medilog ADAPT for neural 

network beat classification has been presented and its 

performance evaluated. The paradigm improves on the 

standard paradigm for neural network classifiers in two 

important aspects: 

 

 First, the use of single-feature probability estimates as 

inputs to the neural network means that when a measure-

ment is missing or cannot be made – for example, due to 

noise or artefact – the corresponding probability estimate 

is assigned a value of 0.5 to represent the fact that 

nothing is known about the QRS complex on the basis of 

this feature. 
 

Second, the use of a neural network for which input 

values of 0.5 generate an output value of 0.5 yields 

superior performance compared to neural networks 

selected using either of the two standard selection criteria. 

Indeed, if the 720 MLPs in Figure 1 are ranked in 

ascending order using either of the standard criteria then 

the MLP for which input values of 0.5 generate an output 

value of 0.5 would be ranked 371st or 347th (i.e. 370 or 

51% of the 720 MLPs have an m.s.e. < 0.108115 and 346 

or 48% have a classification error rate < 6.52%). This 

MLP would never be selected for use despite the fact that 

its performance on an independent test set is superior to 

that of either of the MLPs ranked first. However, given 

its superior performance it is this neural network that is 

used in Medilog ADAPT (in fact three instances of it are 

used since beat classification is performed on each 

channel independently). It has been shown that using this 

neural network Medilog ADAPT is 99.9% accurate when 

tested against a database of eight 3-channel 24-hour ECG 

recordings. A commercial Holter system that uses the 

Medilog ADAPT analysis algorithm is now in use in 

cardiology departments worldwide [7]. 
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