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Abstract

Very little works have been done on PR intervals, un-

doubtedly because this signal is difficult to extract and pro-

cess, as in exercise tests where T-P fusion occurs during

higher heart rates, what makes this problem still interest-

ing. The common approach for the estimation of PR inter-

val during both exercise and recovery is to determine the

latency using the detection of the maximum of cross corre-

lation function. This work aims to present a new method of

time delay estimation with unknown signal based on an it-

erative Maximum-Likelihood approach which generalizes

the well known Woody’s method. This leads to a new ap-

proach to determine the PR intervals taking into account

the presence of the T wave that is modeled. This work ex-

hibits the existence of an abrupt change of slopes of PR

and RR intervals at the same time occurrence and a phe-

nomenon of “overshoot” during the recovery for athletes.

1. Introduction

The analysis of the heart period series is a difficult task

especially under graded exercise conditions. Correlation

techniques are usually used to estimate the PR by determi-

nation of the latency using the detection of the maximum

of the cross correlation [1],[2]. Here, we will present a

new approach to determine the PR interval taking into ac-

count the presence of the T wave which is especially dif-

ficult to extract during high rates because it overlaps the P

wave. In order to estimate the PR intervals, we will use the

Maximum Likelihood Estimator (MLE). The idea behind

maximum likelihood parameter estimation is to determine

the parameters that maximize the probability of the sample

data.

The first part of the paper is devoted to present a new

method to determine the PR intervals. We will present a

method which formalizes the Woody’s one [3], using an

iterative MLE to estimate delays which correspond to PR

intervals. We will extend the Woody model because in ex-

ercise tests T-P fusion occurs during higher heart rates. It

will be based on the modeling of the T wave which over-

laps the P wave especially during the exercise, in order

to generalized more over. Finally, the results of this new

method will be presented: a high correlation between the

time occurrence of the abrupt change of slopes of PR and

RR intervals during recovery is displayed. Besides, the re-

sults exhibit a phenomenon of “overshoot” during the re-

covery for athletes.

2. Methods

Charles D. Woody [3], presented in 1967 an adaptative

filter which allowed identification and analysis of variable

latency signals and the basis of detection of latency by cor-

relation. He calculated the cross correlation between each

sweep and a template. Hence, the time lag matching the

cross correlation maximum corresponds to the latency shift

of the given sweep. However, as shown in [4], this method

is suboptimal. Actually, in this model, xi(n) represents all

the observations (for all n) of the considered ith PR inter-

val (i = 1..I , I the number of realizations). Also sdi
(n) is

defined as the reference wave, the template, delayed of di

as sdi
(n) = s(n − di) and ei(n) a observation’s noise:

xi(n) = sdi
(n) + ei(n) (1)

The technique derives from iterative correlation and av-

eraging of the data signals. In the beginning, a template

data block is built. At each step i, the maximum of cross

correlation between the template and the ith block gives

the estimation of delay d̂i. When all the d̂i for i = 1..I

are estimated, each ith data block is corrected by his ith

delay d̂i. The average of these aligned data blocks gives

a new template. Then, a new iteration for i from 1 to I is

computed to determine the new d̂i until convergence.

ISSN 0276−6547 497 Computers in Cardiology 2006;33:497−500.



This method is suboptimal because the considered sig-

nal is included into the average taken as a template in the

cross correlation step. So, the cross correlation is biased.

Also, the same template is used to estimate all the delays

during one iteration ; all the estimated delays are taking

into account in averaging process at the end of the itera-

tion.

Later, Pham et al. [5] studied the estimation of vari-

able latencies of noisy signals. Jaśkowski and Verleger [6]

refereed to a more general model in which the amplitude

variability is also allowed :

xi(n) = αi.sdi
(n) + ei(n)

However, these two studies, [5], [6], are not really fair

regards the optimality of the method since they include fre-

quency a priori in their approach.

As in exercise tests T-P fusion occurs during higher

heart rates, we can consider that the T wave is repre-

sented by a function f(n; θi) linearly parameterized. We

assume that the T wave should be described by a regular

and smooth function, i.e. a lth order polynomial function

characterized by its coefficients in the vector θi.

Finally, our model is expressed as :

xi(n) = αi.sdi
(n) + αi.fdi

(n; θi) + ei(n) (2)

where i, i = 1..I , is the number of realizations, and the

variable di is the ith PR interval to be estimated up to an

unknown constant.

It is obvious that if we do not impose constraints on the

estimated delays, we will estimate the signal s with a time-

lag. That is why, it is necessary to impose that the average

of the estimated delays equal a constant. For example, we

choose the average of the delays identical to the average of

the estimated delays at the end of the first iteration.

In order to estimate the PR intervals, we use the Max-

imum Likelihood Estimator (MLE). The details of the

demonstration are reported in [4].

The noise ei is an iid gaussian noise with zero mean and

a variance σ2. Thus, for all the observations, i.e. all n, and

for all i, we have the likelihood function:

p(X; s, di, θi, αi) = Ψ. exp(− 1

2σ2 .

∑

i

.
∑

n

(xi(n) − αi.fdi
(n; θi) − αi.sdi

(n))2 (3)

The aim is to maximise p(X; s, di, θi, αi), correspond-

ing to the minimization of the criterion J :

J =
∑

i

‖ xi − αi.sdi
− αi.fdi

(θi) ‖
2 (4)

The minimization of the criterion (4) regards s gives :

ŝ =
1

I

∑

k

1

αk

(xk,−dk
− αk.fdi

(θk))

As previously mentioned, we can consider that the T

wave is modeled by a function f(n; θi) which is, for exam-

ple, a lth order polynomial characterized by its coefficients

θi :

fdi
(θk)[n] =

L∑

l=0

θk[l].(n − di)
l

Also, in order to assert that the model is identifiable, we

add a new non restrictive constraint that is the average of

the functions f(θk) is zero.

Finally, the criterion to be minimized is J :

J =
∑

i

‖ xi − αi.fdi
(θi) −

αi

I

I∑

k=1

1

αk

xk,di−dk
‖2 (5)

When we develop this criterion (6), we can observe, for

example for di, that it appears especially in the ith term

and is present only once in the others terms. Then, we can

make the approximation that in the others terms the di’s

influence is negligible; only the ith term in the criterion is

then considered for the ith step. Then, thanks to this ap-

proximation, for the ith step, the criterion to be minimized

is:

J =‖ xi − αi.fdi
(θi) −

αi

I

I∑

k=1

1

αk

xk,di−dk
‖2 (6)

Then, the optimization can use an iterative algorithm.

In the first time, we define a reference wave, a template,

which is the average of the observations which do not con-

tain T wave considering that all the αi equal 1. Thanks to

the MLE, for the first step (i.e. i = 1), we estimate the

coefficient α̂1, the coefficient θ̂
1

of the polynomial func-

tion and the delay d̂1. We adjust the first observation by

substraction of the polynomial function and realign it us-

ing the estimated delay. A new template is computed in

order to be used in the next steps. If necessary, the pro-

cess can be iterated depending on the convergence of the

algorithm. Thanks to this model, we take into account the

overlapping T wave. Then, the PR intervals are produced

up to an unknown constant by the estimated delays d̂i.
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Figure 1. PR intervals up to an unknown constant for one

subject - Representation of 10 iterations of the algorithm -

The 10th iteration is represented by the line with asterisk

marker.

3. Results

The previous method which is a generalization of the

Woody’s method regards optimality and modeling, is ap-

plied to real data. Here, we present the results of the delays

estimation method applied on real ECG recordings from

12 healthy men (including 6 athletes). The subjects per-

formed a graded exercise test on a cycle ergometer.

Before the PR estimation, two pre-processing methods

permit us to estimate the position of R waves and a coarse

P wave localization. First, a threshold technique applied

on the high-pass filtered and demodulated ECG, refines

the estimation of the R waves times of occurrence. Then,

we obtain segments including each P wave and its corre-

sponding R wave, in sequence. We consider the segments

as observations xi in the model (2).

By computation of the method, we estimate the coeffi-

cients of the polynomial function representing the T wave

and we obtain the d̂’s corresponding to the PR intervals

up to an unknown constant. The algorithm is iterated un-

til convergence. On pseudoreal simulations of ECG, it

has been observed that the better order for the polynomial

function was the first one. This order corresponds to a good

balance between bias and variance.

Figure 1 shows an example of the estimated PR inter-

vals. Ten iterations are plotted assuming the algorithm

converges at the end. That will be the case for all subjects.

On a real data set, the results exhibit the same trend for

PR and RR intervals. Only the recovery period is presented

on figure 2 showing evidence of an abrupt change of the

slope of the PR intervals which is significantly correlated

with the RR’one (r = 0.996 ; p-value < 0.001). Figure 3

shows the scatter diagram which puts in light the relation

between the time occurrence of abrupt change of slope of
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Figure 2. Evolution of PR and RR intervals during recov-

ery - Abrupt change of slope at the same time occurrence
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Figure 3. Scatter diagram of the observations for 12 sub-

jects - Relation between the abrupt change of slope for PR

and RR intervals; r = 0.996 ; p-value < 0.001

PR and RR intervals during the recovery.

Figure 4 shows a phenomenon of “overshoot” during re-

covery which is visible only for the 6 athletes : quickly

after the end of the exercise, the PR interval’s values are

higher than those at rest and then decrease tending towards

their nominal value. This overshoot is significant thanks to

confidence intervals which are computed over 10 samples

intervals with p-value < 0.01.
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Figure 4. Estimation of PR intervals up to an unknown

constant and confidence intervals over 10 samples’ win-

dow for a p-value < 0.01 - “Overshoot” during recovery

4. Discussion and conclusions

The techniques to estimate the PR intervals were based

only on the detection of the maximum of cross correlation

function [1], [2]. In this study, it has been presented a new

method based on an iterative Maximum-Likelihood ap-

proach which generalizes the well known Woody’s method

[3]. Thanks to this new technique, the estimation of PR in-

terval on effort ECG takes into account the presence of the

T wave which overlaps the P one at high heart rate.

On real data set, we note that during the recovery, it ex-

ists an abrupt change of slope of the PR intervals which

is significantly correlated with the RR’s one. As the ex-

ercise ends, the PR and the RR intervals increase piece-

wise linearly with two different slopes. The location of the

slope change is related to each subject. The high correla-

tion between the change of slopes of PR and RR intervals,

confirms that the origin of this variation is the same for the

two types of intervals. This can be explained at the physio-

logical level by a parasympathetic return and sympathetic

withdrawal which are different on the two nodes. Actu-

ally, several studies have revealed that the sympathetic and

parasympathetic influences on the sinusal and atrioventric-

ular nodes seem to be different [7], even independent [8].

It would seem that the parasympathetic influence works

more on the AV node than it does on the sinusal one at the

exercise’s end.

In conclusion, this technique of time delay estimation

which improves the Woody’s method, is a good tool to

characterize the PR and RR intervals and, including oth-

ers studies, it would carry out a better knowledge of the

neural activity during exercise and recovery in the field of

pacemaker’s design. Also, an endocavity recording, where

we could reliably mesure the PR intervals, could help us

to confirme our results and conclusions. However, it exists

a lot of limitations for this type of protocol. Furthermore,

endocavity investigation is a risky procedure during exer-

cise when heart rate is high.
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