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Abstract

One of the main uses of the Intravascular Ultrasound

(IVUS) images is tissue classification. Some of the most

important tissues are calcium, fibrotic, and lipid plaque.

Usually, this task is achieved using DICOM images. Here

we exposed the use of reconstructed images from RF data

to improve the classification process, because it is given

the advantage of normalizing the images to a fixed para-

meter set. In this approach, 6 different data sets are gen-

erated using 150 tissue sections obtained from 54 images

of 6 patients. Then, the images are classified employing

adaboost classifiers with Error Correcting Output Codes

(ECOC) using 85% of the data for training and the rest

for testing. The pixel classification rate for DICOM im-

ages is: 76.11% composed of 72% for calcified, 76.13%
for fibrotic, and 80.21% for lipid tissue. For reconstructed

images the hit rate is 79.03%, from which 77.6% of cal-

cium, 69% of fibrosis and 90.5% of lipid tissue are well

detected.

1. Introduction

Plaque rupture is one of the most frequent cause of coro-

nary diseases. Many studies, nowadays, report a high cor-

relation between an acute coronary syndrome and multiple

plaque ruptures. To understand the mechanisms of plaque

destabilization, it is relevant to characterize the fragile part

of the plaque and to differentiate between low-risk and

high-risk plaques.

The Intravascular Ultrasound (IVUS) images offers us

a unique view of the arterial plaque, since it displays

the morphology and histological properties from a cross-

section of the vessel. There are three different types of

plaque distinguishable: calcium, fibrous plaque and lipidic

or soft plaque. The automatic analysis of these tissue in the

IVUS images allows feasible ways to predict and quantify

the vulnerable plaques, avoiding the subjectivity due to the

physician who performs the study.

The analysis of IVUS images has been approached

proposing the inspection of the DICOM images them-

selves by performing texture analysis [1, 2]. However

these images are difficult to normalize since it requires

high computational cost and the images are save under dif-

ferent parameter sets depending on the physician. Conse-

quently, it provokes a lack of standardized data sets.

In this paper we propose a framework to reconstruct nor-

malized IVUS images from the raw Radio Frequency (RF)

signals coming from the IVUS equipment. Having these

images, a texture based characterization process is applied.

This data is feeded into an Adaboost with Error Correct-

ing Output Codes (ECOC) framework to perform the tis-

sue classification. The main advantages of our method are

twofold, because our method offers the advantage of nor-

malizing all cases to a fixed parameter set with low com-

putational cost, and uses a machine learning technique al-

lowing us to ensure a proper behavior of the classification

approach.

In section 2, we present the methodology used. Firstly

an explanation of the image reconstruction process is ex-

pose where the technical parameters are stated. Secondly

it is detailed the feature extraction process based on Co-

occurrence Matrix, Local Binary Patterns, and Gabor Fil-

ters as texture descriptors. Additionally it is presented the

classification scheme performed. In section 3, some quan-

titative and qualitative results are displayed for different

parameter sets. Finally, a discussion and conclusion are

presented.

2. Methods

2.1. Image reconstruction process

The IVUS equipment consists of a main computer to re-

construct images, and a catheter which is introduced into

the vessel to perform an exploration. This catheter car-

ries an ultrasound emitter which shots a given number of

beams, and a transducer that collects the tissue reflections

as RF signals.

These signals are acquired using a 12-bit Acquiris acqui-

sition card with a sampling rate of 200MHz and the trans-

ducer frequency of the catheter is 40Mhz. Additionally,
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Figure 1. Reconstruction process. (a)acquired RF signal.

(b)RF signal filtered and compensated. (c)envelope detec-

tion. (d)polar image

it is assumed a sound propagation in tissue of 1565m/s
[3]. Each IVUS image consists of a total of 256 A-lines

(ultrasound beams) with length of 6.5mm. The acquired

RF signals were obtained from in vivo patient pullback se-

quences.

Once the RF sequences have been collected, the im-

age construction process is performed. As a preprocessing

steps the signals are filtered at the transducer frequency.

Then, it is applied a linear time gain compensation in or-

der to correct the tissue attenuation of α = 1DbMhz/s[3].

Once the signals are compensated, the signal envelope is

calculated using the Hilbert transform. The result is com-

pressed logarithmically and normalized in order to distrib-

ute the gray levels and to enhance the image visualization.

The image is constructed in polar form Rθ. To regulate

the contrast it is applied a non linear Digital Development

Process (DDP) radially [4]. As a final step the IVUS Image

is built in cartesian form, and the missing pixels between

each angle are filled using interpolation. The process is

depicted in figure 1

By fixing the (DDP) parameters, we can normalize im-

ages from different patients with the same contrast or gain

and low computational cost, which is not an easy task in

DICOM images since each study is saved according to the

physician who performs the study without any parameter

information. The figure 2 shows an example of constructed

images with different DDP gain parameter values.

2.2. Feature extraction

To extract image features, we have exploited 3 different

texture descriptors: Co-occurrence Matrix, Local Binary

Patterns and Gabor Filters.

The Co-occurrence matrix is defined as the estimation

(a) (b) (c)

Figure 2. Reconstructed IVUS images from RF signals

with different DDP gain parameters. (a)DDP gain para-

meter fixed to 1.04. (b)DDP gain parameter fixed to 2.20.

(c)DDP gain parameter fixed to 3.00.

of the joint probability density function from the gray level

pairs on a image [5]. The sum of all element values is:

P (i, j,D, θ) = P (I(l,m) =
i ⊗ I(l + Dcos(θ),m + Dsin(θ)) = j),

where I(l,m) is the gray value at the pixel(l,m), D is

the distance among pixels and θ is the angle of each of

neighbors. The angle orientation θ has been fixed to be

[0o, 45o, 90o, 135o], [6, 5]. After computing this matrix,

some characterizing measures, such as energy, entropy,

the Inverse Difference Moment(IDM), shade, inertia and

promenance, are extracted [5]. With these descriptors, a 48
feature space is built for each pixel, since we are estimat-

ing 6 different measures at 4 orientations and 2 distances

in pixels D = [5, 8].
Local Binary Patterns are operators used to detect uni-

form texture patterns in circular neighborhoods with any

quantization of angular space and spatial resolution[7]. It

is based on a circular symmetric neighborhood of P mem-

bers of a circle with radius R. To achieve gray level invari-

ance, the central pixel gc is subtracted to each neighbor gp,

assigning to the result 1 if the difference is positive and

0 otherwise. Each neighbor is weighted with a 2p value.

Then, the neighbors are added, and the result is assigned

to the central pixel.

LBPR,P =

P∑

p=0

s(gp − gc) · 2
p

The use of these operators generates a 3 dimensional

space in texture analysis, by applying a radius of R =
[1, 2, 3] and a neighborhood of P = [8, 16, 24].

A Gabor Filter is an special case of wavelets [8], and is

essentially a gaussian g modulated by a complex sinusoid

s. In 2D,the form of a Gabor filter in the spatial domain is

consider as the following:

h(x, y) = 1

2πσ2 exp{− 1

2
[(x2

+y2

σ2 )]} · s(x, y),
s(x, y) = exp[−i2π(Ux + V y)], φ = arctanV/U

where σ is the standard deviation for the gaussian enve-

lope, U and V represent the 2D frequency of the complex
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Table 1. ECOC code map used in the classification

Classes Classifier 1 Classifier 2 Classifier 3

Calcium 1 1 0

Fibrotic Plaque -1 0 1

Soft Plaque 0 -1 -1

sinusoid, and φ is the angle of frequency. We have repre-

sented the 2D frequency, (U, V ), by a polar representation

F, φ. Thus, we have created a filter bank using the follow-

ing parameters:

σ = [12.7205, 6.3602, 3.1801, 1.5901],
φ = [0o , 45o , 90o , 135o],
F = [0.0442, 0.0884, 0.1768, 0.3536],
Now that we have extracted all the features explained

above, we compile them into a unique feature vector of 67
dimensions for each pixel, which will be used to train and

test the classifier.

2.3. Classification

Once we have designed the feature characterization, a

classification scheme is developed. We have established

3 classes of tissue: fibrotic plaque (characterized by a

medium echo-reflectivity and good transmission coeffi-

cient), lipid or soft plaque (very low reflectance), and cal-

cium (high echo-reflectivity and absorbtion). We have

used the supervised learning technique Discrete Adaboost

[9, 10]to train the different classifiers.

Since we have a multiclass problem and adaboost is, by

definition, used for two class problems, we have estab-

lished a combination criterion for the different classifier

outputs. To avoid draw among classes we have employed

the Error Correction Output Codes (ECOC)[11]. This

technique consists in designing a code map table which

relates the classifier outputs with the classes. The final

classification is obtained by finding the minimum distance

among the resulting code and the classes code.

The classification map from the ECOC for our problem

is shown in table 1. The number 0’s indicate that these

classes are not used in the selected classifier. The 1’s indi-

cate that the classifier should output a positive value when

this class is found, and negative one (−1) when it is not.

Here, we have used the Euclidean Distance to find the class

likelihood.

3. Results

We have reconstructed IVUS images from in vivo se-

quences, from a set of 6 patients all with the three classes

of plaque. For each patient, 5 to 10 different vessel sec-

tions are selected, having a total of 54 analyzed images.

The physicians have segmented from the vessel images

Figure 3. Classification result among different DDP gain

parameters for each type of tissue

around of 30 sections of interests per patient. These seg-

mentations were taken as regions of interest (ROI) to cre-

ate the data set for this experiment. In order to test the

performance of our texture based classification approach,

we have selected 6 different DDP gain parameters to re-

construct the images (1,1.4,1.8, 2.2, 2.6, 3.0). Then, there

has been created six different data sets, and their extracted

texture features have been processed separately using the

characterization exposed before.

After this, the training and testing set is formed. To

avoid any kind of bias, the experiment has been repeated

6 times by picking in each iteration one different patient

(10% - 15%) for testing and the rest for training purposes.

Notice that this scheme validates inter-patient variability.

For every DDP gain parameter values a classification er-

ror has been computed for each kind of tissue. Thus, the

accuracy for different DDP gain parameters is shown in

figure 3.

It can be seen that the best gain parameter is 1.8 where

the classification results with any kind of post processing

are: 70% for fibrotic plaque, 90.5% for lipid, and 77.6%
for calcium. These results are more accurate than DICOM

images analysis where the classification rates are: 76.13%

for fibrosis, 80.21% for soft tissue and 72% for calcified

tissue well detected. Qualitative results are observed in

figure 4

4. Discussion and conclusions

It has been presented a normalization model to analyze

IVUS images generated by a RF signals reconstruction

process with a fixed set of parameters, which is more ac-

curate than using DICOM images. It suggests the ability

to reproduce IVUS images offline where the manual seg-

mentation can be achieve easily since each physician can

adjust the image gain to focus on a given tissue. It eases the

classification process because the data are still normalized.
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Figure 4. Image classification a) image segmented by the

physician b)classification result using the best gain. White

is calcium, and light gray is lipid plaque

It can be conclude that not only a single gain parame-

ter could enough for the classification process, but also a

combination of multiple gain values, each one designed

for a different tissue, could be suitable. The inclusion of

some postprocessing techniques, such as grouping could

improve the classification rates. However, this could de-

crease the classification resolution or introduce a certain

bias.

Additionally some RF signal features could be explored

to be attached with the image features in order to increase

the accuracy. It is suggested because RF signals repre-

sent the raw information obtained from the IVUS catheter,

which contain more information than images due to the re-

construction process.
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