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Abstract

Baseline drift and QRST residues are frequently present

after QRST cancellation. This study deals with the im-

provement of atrial signal quality after QRST cancella-

tion using an empirical mode decomposition (EMD) based

post-processing. The EMD decomposes non-stationary

signals into narrow-band components, known as intrinsic

mode functions (IMFs). Simulated and clinical 30-second

segments of estimated atrial activity (after QRST cancel-

lation) on lead V1 were decomposed into IMFs using an

EMD algorithm. The DF and the energy ratio between

TQ and QRS segments for each enhanced IMF component

were used to select the IMFs that correspond to atrial ac-

tivity. The atrial activity signal was taken as the sum of

the selected IMFs. The performance of the method is com-

pared with that of a standard post-processing approach us-

ing an infinite impulse response bandpass filter.

1. Introduction

Atrial fibrillation (AF) is the most common type of hu-

man cardiac arrhythmia. On the ECG, AF signals are char-

acterized by continuous, apparently disorganized, fibrilla-

tory waves (F-waves). Due to the much higher electrical

amplitude of the electrical ventricular activity (VA) on the

surface ECG, isolation of the atrial activity (AA) compo-

nent is crucial for the study of AF. Some methods used for

solving this problem are based on the average beat sub-

traction (ABS). An average of the ventricular complexes

(QRST complexes) is used to cancel these ventricular com-

ponents. In general, results from ABS based methods are

accurate but visible baseline drift and QRS residues are fre-

quently present after VA cancellation. Standard filters are

usually applied in order to remove these artefacts.

Fourier methods, wavelet analysis and principal com-

ponent analysis (PCA) are some of the major approaches

used for decomposing time series into components. All of

these satisfy two criteria: (1) completeness of the basis and

(2) orthogonality of the basis. The limitation of stationar-

ity, of time resolution (wavelet) or the lack of characteristic

time of frequency components (PCA) are some of the mo-

tivations for new analysis techniques. The EMD was first

introduced by Huang et al. in 1998 [1]. This technique was

proposed to analyze non-stationary and nonlinear time se-

ries and to determine characteristic time/frequency scales.

These components are called Intrinsic Mode Functions

(IMF). Recently, Andrade et al. have proposed to use of

a filtering method based on EMD to denoise electromyo-

graphic signals [2].

In this paper, we study the effectiveness of an EMD-

based method for post-processing the ECG signals after

QRST cancellation. The method selects the IMFs that rep-

resents AA using their DFs and the energy ratios between

their TQ and QRS segments. An infinite impulse response

(IIR) highpass filter is applied to remove the baseline drift

in the last stage. The performance of this method is studied

in its application to ECG signals generated by a biophysi-

cal model of the atria, as well as to clinical recordings. The

performance of the method is compared to that of an IIR

bandpass filter.

2. Methods

2.1. Empirical mode decomposition

The EMD technique decomposes time series into com-

plete, almost orthogonal, local and adaptive basis func-

tions, named intrinsic mode functions (IMFs). These IMFs

should have a well-behaved Hilbert transform (and thus a

well-defined instantaneous frequency). To get the well-

behaved Hilbert transform, one must locally eliminate rid-

ing waves and asymmetries. In order to possess the proper-

ties mentioned above, the IMFs are required to satisfy two

criteria: (1) the number of extrema and the number of ze-

ros crossings must differ by one at most and (2) the mean

value of the envelopes, one defined by the local maxima

(upper envelope) and the other by the local minima (lower

envelope), is 0. Any signal that satisfies these two criteria

is considered to be an IMF.

This definition of IMFs is empirical and there is no ex-

plicit equation for estimating them. Rilling et al. have pro-

posed an effective implementation of EMD [3, 4]. Given

a signal x(t) to be decomposed, the initial step is defin-

ing with xi,j(t) to be equal to x(t), where the first index i
refers to the ith IMF and the second index j refers to the
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jth iteration to find the ith IMF. The subsequent steps are:
1. identification of all extrema of xi,j(t);
2. extrapolation of the lower envelope elo

i,j(t) (respectively

upper envelope eup
i,j(t)) by an interpolation between min-

ima (respectively maxima);

3. computation of the mean of both envelopes eme
i,j (t) =

(elo
i,j(t) + eup

i,j(t))/2;

4. extraction of the ith IMF candidate ci,j(t) = xi,j(t) −
eme

i,j (t);
5. if candidate ci,j(t) fulfills the criteria defining an IMF,

it is assigned as the ith IMFi, the new xi+1,1(t) = x(t)−
∑i

k=1
IMFk and steps (1) to (5) are repeated;

6. if candidate ci,j(t) does not fulfill the criteria defining

an IMF, it is assigned to the variable xi,j+1(t) and the steps

(1) to (5) are repeated.
When xi,j(t) is equal to eme

i,j (t), the whole procedure

stops and xi,j(t) is assigned as the last ith IMF. The crite-

ria defining an IMF were the ones proposed by Rilling et

al., [3]. A candidate ci,j(t) is considered as an IMF if its

evaluation function σi,j(t) is lower than θ2 for all values

and lower than θ1 for (1 − α)% of the values. The eval-

uation function is defined as σi,j(t) = |eme
i,j (t)/mi,j(t)|,

where mi,j(t) = (eup
i,j − elo

i,j)/2. Fig. 1 shows the first it-

eration on an ECG signal during AF after QRST cancella-

tion. It demonstrates that EMD technique has the tendency

to isolate the residue in the first IMFs.
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Figure 1. (a) Clinical 2-second ECG signal on V1 (R-

waves saturated). (b) Signal (a) after QRST cancellation.

Blue (respectively black) dashed ellipses represent pos-

sible QRS residues (respectively T-wave residues). Red

dashed ellipses represent steplike residuals after template

subtraction. (c) Mean envelope eme
1,1(t) of (b) with its up-

per (eup
1,1(t)) and lower (elo

1,1(t)) envelopes. (d) The first

candidate c1,1(t).

2.2. ECG post-processing

Let x(t) be an ECG signal after application of QRST

cancellation, see [5]. In some cases, baseline drift and

QRST residues remain.

The procedure used in this study is the following:

1. decomposition of x(t) into IMFs;

2. identification of the DFs for each IMF by using a power

spectral density (PSD) estimate;

3. computation of the energy ratio between TQ and QRS

segments for each IMF;

4. selection of the IMFs that represent AA using their DFs

and energy ratios;

5. reconstruction of the estimated AA with the summation

of the selected IMFs;

6. application of a final highpass filter to the estimated AA

signal.

Welch’s method was used to obtain the PSD estimate.

Due to the properties of IMFs, the DFs slowly decrease

from the first to the last IMF. We define all the values of

the ith IMF in the TQ segments (respectively QRS seg-

ments) by an N -by-1 vector ai (respectively M -by-1 vec-

tor bi). The energy ratio ri of the ith IMF was computed

as follows: ri = (
∑

a2
i /N)/(

∑
b2

i /M). The IMFs taken

to represent AA were those with DF below 10 Hz and ri

above 0.5. The highpass IIR filter used to remove the base-

line drift was a zero-phase (bidirectional) fifth-order But-

terworth filter with a cutoff frequency of 2 Hz.

2.3. Synthetic signals

A three-dimensional model of the human atria was con-

structed from magnetic resonance (MR) images, includ-

ing the openings at the sites of the entries and exits of

the vessels as well as at the locations of the valves con-

necting the atria to the ventricles [6]. In order to create

substrates for AF, patchy heterogeneities in action poten-

tial duration were introduced by modifying the local mem-

brane properties. Simulated AFs induced by rapid pac-

ing in the left atrium appendage were observed as multi-

ple reentrant wave fronts that propagate and interact in a

random fashion over the atrial surface. Nine different sim-

ulated AF types, ranging from 11.3 to 23.9 seconds, were

created by modifying the pacing protocol and the hetero-

geneities.

Body surface potentials associated with the AA were

computed by using a compartmental torso model includ-

ing the atria, the ventricles, blood cavities and the lungs,

constructed from MR images [7]. The nine ECG episodes

of simulated AF were duplicated to cover thirty seconds.

These nine 30-second ECGs of simulated AA were com-

bined with four different clinical 30-second standard 12-

lead ECGs of patients in sinus rhythm, from which the P

waves were removed. In this manner, 36 realistic simulated

30-second AF signals sampled at 500 Hz were created in

the standard 12-lead system.
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2.4. Clinical signals

A clinical database, composed of 72 30-second standard

ECGs of patients in sustained AF was used. The signals

were recorded and stored using a commercial recording

system (CardioLaptop R© AT-110, SCHILLER). The sys-

tem used electrocardiographic filtering (0.05 to 150 Hz), a

dynamic range of ±10mV AC (resolution of 5µV) and a

sampling rate of 500 Hz.

2.5. Evaluation procedure

The energy ratio between the TQ and QRS segments, the

kurtosis value and the DF were used to evaluate the simu-

lated and clinical performance of the proposed method on

lead V1. The RMS based relative difference (RD) was also

used to evaluate the performance on the simulated ECG

signals. The relative difference between the estimated AA

signals and the original simulated AA signals was com-

puted for each post-processing method. The energy ratio

(respectively the kurtosis value) is generally close to 1 (re-

spectively lower than 0) for AA signal. The results were

compared to those of a bidirectional IIR bandpass filter

(zero-phase fifth-order Butterworth). The cutoff frequen-

cies for the bandpass filter were 2 and 15 Hz.

3. Results

Energy ratio Kurtosis RD (%) DF (Hz)

Real VA 0.0 ± 0.0 18.1 ± 2.3 - 2.0 ± 1.0

AA
simulated

1.0 ± 0.1 -0.5 ± 0.5 - 6.2 ± 1.2

after can-
cellation

1.3 ± 0.2 0.4 ± 0.4 1.2 ± 0.1 1.5 ± 2.6

EMD 1.1 ± 0.2 0.0 ± 0.4 0.6 ± 0.1 5.9 ± 1.3

IIR
bandpass

1.2 ± 0.2 -0.1 ± 0.4 0.5 ± 0.1 6.2 ± 1.2

Table 1. The performance of the EMD-based method com-

pared to that of applying a IIR bandpass filter. Documented

are: the energy ratio between the TQ and the QRS seg-

ments, the kurtosis and the RD values (mean ± standard

deviation) on the 36 simulated signals.

Table 1 summarizes the performance of both methods

applied to the 36 simulated ECGs. Table 2 summarizes

the performance of both methods applied to the 72 clinical

ECGs. Fig. 2 shows the results (in detail) obtained by the

proposed method and with the other filter applied to a clin-

ical 2-second segment. For all results, the three parameters

θ1, θ2 and α of the EMD algorithm were fixed at 0.5, 0.05
and 0.05, and the maximum number of iterations was fixed

at 300, default values in [3].
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Figure 2. (a) Clinical 2-second ECG signal on V1 (R-

waves saturated) and its PSD estimate (g) with a DF of

7.48 Hz. (b) Signal (a) after QRST cancellation and its

PSD estimate (f) with a DF of 0.50 Hz. (c) and (d) are

the IMFs obtained from (b) and their corresponding PSD

estimates ((i) and (j)). The black IMFs (group (d))were

the ones that represent AA. (e) Post-processed estimated

AA (sum of black IMFs, group (d)) with the EMD-based

method and its PSD estimate (k) with a DF of 4.97 Hz.

(f) Post-processed estimated AA with a bandpass IIR filter

(cutoff frequency of 2 and 15 Hz) and its PSD estimate (l)

with a DF of 9.98 Hz.)

4. Discussion and conclusions

In regard to the simulated ECG signals, Table 1 shows

that no significant statistical difference exists between the

performances of the EMD-based method and of the IIR

bandpass filtering over the 32 simulated signals in terms

of energy ratio and kurtosis value. In terms of relative dif-

ference, the IIR bandpass filtering (0.5 ± 0.1%) outper-

formed the EMD-based method (0.6 ± 0.1%). In terms of

the DF accuracy, the IIR bandpass filter also outperformed

the EMD-based method; the average of DFs of the simu-

lated AAs is 6.2±1.2 Hz in comparison to the IIR bandpass

filter (6.2±1.2 Hz) and the EMD-based method (5.9±1.3
Hz).

In regard to the clinical signal, Table 2 shows that no

significant statistical difference was present between the

performances of the EMD-based method and the IIR band-

pass filtering over the 72 clinical signals in terms of en-

ergy ratio, kurtosis value and DF. The average of DFs es-

timated from these signals with the EMD-based method
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Energy ratio Kurtosis DF (Hz)

ECG (V1) 0.03 ± 0.04 10.00 ± 4.85 3.08 ± 1.95

after cancella-
tion

1.16 ± 0.32 1.30 ± 2.24 0.87 ± 1.47

EMD 1.02 ± 0.24 0.62 ± 0.99 5.83 ± 1.36

IIR bandpass 1.05 ± 0.28 0.64 ± 1.05 5.70 ± 1.41

Table 2. The performance of the EMD-based method is

compared to that of applying a IIR bandpass filter. Docu-

mented are: the energy ratio between the TQ and the QRS

segments, the kurtosis and the RD values (mean ± stan-

dard deviation) on the 36 simulated signals.

(5.83±1.36 Hz) and the average of the DFs estimated with

the IIR bandpass filter (5.70 ± 1.41 Hz) also show that no

significant statistical difference was present between the

performances of both methods.

Interestingly, in some of the clinical cases, the perfor-

mance of the EMD-based method was better than the per-

formance of the IIR bandpass filter in terms of the DF ac-

curacy. These few case results are masked in Table 2 by the

high total number of signals. The clinical example shown

in Fig. 2 is one of these cases. In Fig. 2, the frequency

components of the QRST residues (around 10 and 15 Hz)

are still present after applying the IIR bandpass filter which

is not the case with the EMD method.

The relative difference and the estimated DF in the sim-

ulated and in most of the clinical cases demonstrate that

the IIR bandpass filtering performs well when the QRST

residues do not dominate. Filtering may obviously be in-

efficient in cases where the artifacts have significant power

inside the band of interest (in Fig. 2). In these specific

cases, the EMD-based method performs well in terms of

the DF accuracy. This may be explained by the proper-

ties of the IMFs. The IMFs are forced to be symmetric

and without riding waves. When the artifacts due to QRST

residues, pacemaker pulses, etc. are dominant, they are

mainly contained in the first IMFs. The QRST residues

present in the other IMFs are less concentrated and their

impact on the estimate DF is attenuated, see Fig. 2 (c).
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