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Abstract

Feasibility of the Karhunen-Loève transform (KLT) for

detection of ventricular ectopic beats was studied. The

KLT basis functions of normal QRS complexes were

derived for a small-sized training set of heartbeats. The

relevant KLT features were obtained by comparison

between five selected heartbeats of the predominant

rhythm and the remaining heartbeats in the tested

electrocardiographic (ECG) recording. Statistical

analysis of the KLT features for MIT-BIH arrhythmia

database contributed to the definition of threshold

criteria for discrimination between the predominant and

the ventricular ectopic heartbeats. The achieved accuracy

was about 97.7% for single-lead analysis and above 98%

for joint two-lead processing. The method is attractive

and suitable for implementation in an automatic analysis

module because of the necessity for supervisor annotation

of only five beats of the predominant rhythm in one ECG

recording.

1. Introduction

Automatic heartbeat classification using the

electrocardiogram (ECG) has been a field of intensive

research during the last years. Recently a number of

sophisticated ECG modeling methods, competing for

higher accuracy, were published. Classical techniques use

heuristic ECG descriptors, such as the QRS morphology

[1,2]. However, the QRS pattern recognition techniques

are considerably affected by noise due to unfavorable

signal acquisition conditions. Another group of

approaches, theoretically more robust to noise, are based

on approximating the QRS complex using a small number

of waveforms taken from a suitable dictionary. For

example, the Matching Pursuits method has been recently

introduced for linear expansions of the QRS waveforms

involving non-orthogonal dictionaries based on Wavelet

Packets [3,4]. Other noise-tolerant parametric models of

the QRS complex use common dictionaries of orthogonal

basis functions. Examples of such basis are the Hermite

functions [5,6] and the Karhunen-Loève transform (KLT)

[7], both providing a low dimension feature space for

heartbeat classification. The KLT has also been

successfully applied for reconstruction of the ST-T shape

in studies of the ventricular repolarization period [8,9].

The KLT was preferred because of its power to

approximate a selected segment from the P-QRS-T

pattern with both the lowest expected mean-squared error

and enhanced noise immunity.

The present study investigates the ability of defined

KLT features to improve the accuracy of the KLT method

[7] for discrimination between ectopic beats and the beats

of the predominant rhythm in one ECG recording.

2. Materials and methods

2.1. ECG database

We analysed 44 of the 48 ECG recordings of the

Massachusetts Institute of Technology - Beth Israel

Hospital (MIT-BIH) arrhythmia database. We excluded

the 4 files with paced beats (102, 104, 107, 217). Each

recording has a duration of 30 min and includes two leads

– the modified limb lead II and one of the modified leads

V1, V2, V4 or V5 [10]. The sampling frequency is 360

Hz and the resolution is 200 samples per mV. The

heartbeats were recognized by the fiducial points in the

database. We followed the American Heart Association

(AHA) records equivalent annotation [10] to form two

classes of heartbeats: (i) the class of the ventricular

ectopic beats (V); (ii) the class of the normal beats (N),

including all normal heartbeats (approximately 70% of

the database) and some of the abnormal beats (left bundle

branch block, right bundle branch block, aberrantly

conducted beat, nodal premature beat, atrial premature

beat, nodal or atrial premature beat, nodal escape beat,

left or right bundle branch block, atrial ectopic beat and

nodal ectopic beat). We further restricted the N class to

contain only those heartbeats, which are representative for

the predominant rhythm of the patient - normal beats, left

bundle branch block and right bundle branch block beats.

No selection based on the quality of the signal was

performed. Thus the analysis was applied even in the

presence of artifact or noise in the ECG.
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2.2. Preprocessing

The preprocessing of the ECG signal was performed

using online filters suitable for real-time operation of the

V/N classifier. It involves: (i) a notch filter for

elimination of power-line interference, implemented by

moving averaging of samples in one period of the

interference; (ii) a low-pass filter for suppression of

tremor noise, realized by moving averaging of samples in

30 ms time-interval, thus having a first zero at about 35

Hz; (iii) a high-pass recursive filter for drift suppression

with cut-off frequency of 2.2 Hz. The detailed description

of the pre-processing filters can be found in [1].

The temporal representations of each beat’s QRS

complex was obtained as in [7], where the ECG signals

(sampled at 360 Hz) were decimated by a factor of 3 and

each QRS complex at each channel was represented by a

200-ms period starting roughly 60 ms before the fiducial

point and ending 140 ms after the fiducial point. As a

result, each QRS complex was represented by 24 samples

at each data channel.

2.3. QRS pattern representation by the

Karhunen-Loève transform

Let us denote by * +1 , ..., n?X x x  the 24 x n matrix

having as columns the representations of a set of n QRS

complexes.  We aim to design a linear transform matrix

* +1,..., k?B b b  of dimensions 24 x k such that the

transformed QRS complexes T?Y B X  can be more

easily clustered into classes N and V. The columns of our

transform matrix 1,..., kb b are referred to as transform

functions and the elements of the transformed data

vectors Y  are often called signal coefficients in the

transform domain. It would be desirable that k << 24

which means that we reduce the number of descriptors for

each QRS complex and, therefore, we decrease the

complexity of the classifier.

2.3.1. Derivation of KLT basis functions

As was originally proposed in [7], we use a subset of

the KLT basis functions to design the linear transform

matrix that will compress the useful class information of

each QRS complex. The KLT basis for a finite number of

QRS complexes is defined as the n eigenvectors of their

sample covariance matrix [11]:
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Let us denote by 1,..., kv v the k eigenvectors of

XR corresponding to the k largest eigenvalues (k<24).

Then, we can define an incomplete KLT transform matrix

by * +1,...,KLT k?B v v . Such transform matrix satisfies, for

a fixed number of columns of the transform matrix, the

following optimality condition:
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That is KLTB attains the minimum mean squared

reconstruction error (MMSE) for the observed QRS

complexes. This means that the incomplete KLT

transform effectively compresses the major QRS

structures.

2.3.2. Training set for derivation of KLT

basis functions

The KLT basis functions were derived to approximate

the QRS complex pattern for the beats in class N. We

composed a small-sized training set of heartbeats, which

were chosen to outline the variety of N waveforms that

appeared in each file. Therefore, the analyzed ECG

recordings were represented in the learning set by five

heartbeats of their predominant rhythms. Only 3 files

were represented by 10 beats because two types of

predominant beats were observed, i.e. 212 and 231 files

contain normal and right bundle branch block beats, 207

file contain right and left bundle branch block beats. Thus

the training set was formed by a total number of 235 beats

– 185 normal beats, 20 left bundle branch block beats and

30 right bundle branch block beats. By manually selecting

the prototypical QRS complexes in each recording we

effectively discarded noisy or irrelevant beats in the

computation of the QRS complexes auto-covariance

matrix. This made unnecessary the use of auto-covariance

estimation techniques robust to noise, as the used in [7].

2.3.3. Estimation of relative KLT features

The first 10 KLT basis functions were used to compute

the relevant KLT coefficients for the training set of

heartbeats and for the testing set of heartbeats. The testing

set comprised all QRS complexes that were not used for

training and belonged to the selected heartbeat classes.

The relative estimation of the QRS wave shapes of the

training and the testing beats, i.e. the comparison between

the relevant KLT coefficients, advanced the definition of

the following features for every beat in the testing set:

‚ CSUM: We computed the average KLT coefficients,

across all training heartbeats in the ECG recording.

CSUM represents the mean value of the differences

between the test heartbeat’s KLT coefficients and the

average KLT coefficients of the training set.

‚ CSUM_MIN: We computed the mean difference

between the KLT coefficients of the test beat and the

corresponding coefficients of each training beat.
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CSUM_MIN is the minimum of those average

differences.

‚ COINC: We compared the tested heartbeat with each

of the training heartbeats belonging to the same ECG

recording by calculation of the number of equal

signed pairs of KLT significant coefficients (those

with absolute value above 0.05). COINC stores the

maximal normalized number of the equal signed

pairs.

3. Results

The first 10 KLT basis functions that were calculated

to approximate the QRS complex pattern of normal beats

are presented in Figure 1.

Figure 1. The first 10 KLT basis functions

corresponding to Lead 1 and Lead 2.

Figure 2. CEEr as a function of the eigenvalue order

for the basis vectors estimated for Lead 1.
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(Figure 2) we defined the number of basis functions for

computation of the KLT features. An error of about 1 %

could be provided by using the first 10 basis functions.

The KLT features defined above were computed for all

beats (N=92388, V=6901). In Figure 3 we show the

distributions of those features (CSUM, CSUM_MIN,

COINC) for the two heartbeat classes. The presented

distributions allowed the definition of the following

thresholds for discrimination of the heartbeats belonging

to class N:

 (CSUM_MIN<=1.2) or ((CSUM<=1.5) or (COINC=1))

All other beats are classified as V beats.

Applying the above defined criteria, we calculated the

specificity (Sp) and the sensitivity (Se) representing the

accuracy for the classification of N and V beats,

respectively. The statistical indices are derived for single-

lead analysis (Lead 1), as well as for joint analysis of the

two leads (Lead 1+Lead2) (Table 1).

Figure 3. Histograms of the relative KLT features for

the two heartbeat classes (N and V) for Lead1.
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Table 1. Specificity (Sp) and Sensitivity (Se) for different

combinations of the relative KLT features - assessment

for Lead 1 and Lead 1+Lead 2.

MIT-BIH leads
KLT features Lead1 Lead1+Lead2

Sp [%] Se[%] Sp [%] Se[%]

CSUM_MIN 96.17 99.03 94.7 99.62

CSUM 88.3 98.97 88.36 99.45

COINC 81.27 98.96 91.19 99.26

CSUM_MIN+CSUM 97.15 98.45 96.53 99.42
CSUM_MIN+COINC 96.86 98.25 96.58 99.03

CSUM+COINC 95.23 98.09 97.14 98.9

CSUM_MIN+CSUM+COINC 97.63 97.7 97.73 98.88

4. Discussion and conclusion

The application of the KLT allowed us to reconstruct

the major QRS components using a relatively small

number of KLT basis functions (the first 10). By defining

a small set of beats for each ECG recording and

considering the observable differences between the

shapes of the N and the V beats we were able to use the

KLT coefficients to discriminate between the

predominant and the ventricular ectopic beats within the

same ECG recording. The statistical assessment of the

derived relative KLT features (CSUM, CSUM_MIN,

COINC) for MIT-BIH arrhythmia database showed

considerably different distributions for the 2 heartbeat

classes. This allowed the definition of simple threshold

criteria for fast automatic heartbeat classification. The

achieved sensitivity and specificity are comparable to the

values reported by other authors [1-4,6,7], who published

methods based on joint information for two ECG leads

and large training sets. The advantages of the presented

method are:

- Possibility of using only one ECG lead and only one

feature CSUM_MIN, which searches for the best QRS

shape similarity between the tested beat and one of the

few training predominant beats in the ECG recording:

CSUM_MIN attains Sp=96.2%, Se=99% for Lead1.

- Possibility to use only one ECG lead and to combine

up to 3 KLT features in order to obtain Sp=97.2%,

Se=97.7% (for Lead 1) – see bolded cells in Table 1.

The specific implementation of KLT single-lead

analysis, which for example is applicable in emergency

monitors, could be easily extended to multi-lead

processing of the defined KLT features. The expected

accuracy improvement was confirmed with Lead1+Lead2

and the best results were obtained for: (i) 2 KLT features

- Sp=96.5%, Se=99.4%, (ii) 3 KLT features - Sp=97.7%,

Se=98.9% (bolded cells in Table 1).

The method is attractive and suitable for

implementation in an automatic analysis module because

of the necessity for supervisor annotation of only five

beats of the predominant rhythm in one ECG recording.
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