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Abstract

Given the high prevalence of Atrial Fibrillation (AF)

among adult population, to distinguish between these AF

episodes that terminate spontaneously and those that per-

sist if no external action is carried out becomes a sub-

ject of great clinical interest. In this matter, the complex-

ity analysis of mathematical sequences of parameters ob-

tained from time-frequency distributions of electrocardio-

grams are useful to recognize the type of AF. The param-

eters which complexity has been analyzed are the mean

peak frequency of atrial activity and the spectral concen-

tration. The complexity measurements of the sequences

have been made using the Approximate Entropy, repeating

the same procedure for nine distinct time-frequency dis-

tributions. The possibility of classifying correctly the AF

episodes depends directly on the selected time-frequency

distribution.

1. Introduction

Supraventricular tachyarrhythmias, in particular the

Atrial Fibrillation (FA), are the most commonly encoun-

tered in the daily clinical practice. The prevalence of AF is

less than 1% among population under 60 years old, but

it increases significantly among those over 70, approx-

imating to 10% in those older than 80 [1]. When the

AF terminates spontaneously we refer to it as paroxysmal

AF. On the contrary, when some electrical or pharmaco-

logic cardioversion is needed it is called persistent AF [1].

Frequently, persistent AF results in permanent AF [1, 2],

which is closely related to a rising probability of suffering

embolisms and these might provoke strokes [1]. For this

reason, it is important, from a clinical point of view, to dis-

tinguish between paroxysmal and persistent AF episodes,

because an effective diagnosis based on noninvasive tech-

niques such as electrocardiogram (ECG) could reduce the

number of hospitalizations.

Recent research proves that it is possible to use statisti-

cal analysis of ECG parameters in the time-frequency do-

main as a tool to classify AF episodes [3]. An additional

step to these studies would be to measure the regularity of

time sequences obtained from those parameters and check

the applicability to AF classification. In this sense, entropy

estimators of numerical sequences such as Approximate

Entropy (ApEn) [4, 5] are useful to measure its complex-

ity. These estimators have already been used to charac-

terize some biomedical signals like electroencephalogra-

phy registrations [6] or fetal ECG studies [7]. The novelty

of this paper is to make a entropy study from a previous

transformation of the Atrial Activity (AA) signal to time-

frequency domain, and the later construction of time se-

quences of parameters obtained from the time-frequency

distributions. The main objective consists of proving the

existence of significative regularity differences between

sequences from paroxysmal and persistent AF. This esti-

mation is based on two characteristic parameters of the

time-frequency distributions: the main peak frequency (fp)

and the Spectral Concentration (SC) of the AA. Calcula-

tions have been repeated to nine distinct time-frequency

distributions, so that we can test which of them optimize

results.

2. Database

We have analyzed a total of 30 ECG signals of one

minute in length extracted from 24-hours one-lead Holter

recordings of AF patients. The original sampling rate

of the Holter systems was 128 samples per second, but

ECG signals have been interpolated by a factor of 8, so

that the resulting sampling rate fs equals to 1024 sam-

ples per second. In this way we obtain a higher resolution

of the ECG signals in the time-domain and in the time-

frequency domain, and a better cancelation of the QRS

complex. Sixteen of the signals belong to persistent AF pa-

tients (N-group), since termination was not observed dur-

ing the whole observation time of these patients. The rest

of the signals are annotated as paroxysmal AF (T-group),

given that in all of them the AF episode terminates one

second after the end of the one-minute registration.
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Figure 1. Global process to calculate the complexity of

sequences obtained from time-frequency distributions

3. Methods

3.1. Global process

The global process used to obtain the measures con-

sists of five main steps. Firstly, the Atrial Activity (AA)

is extracted from the ECG registers, given that the analy-

sis of previously separated AA makes easier the study of

AF [8] and improves the information provided by time-

frequency distributions [9]. Secondly, we calculate nine

distinct time-frequency distributions of the previously ob-

tained AA. Next, the fp and SC sequences of every time-

frequency distribution are constructed. Then the ApEn of

these sequences is calculated. Finally, the t of Student test

is applied to the obtained ApEn values in order to know

whether the level of significance between N and T groups

that allows us to distinguish them. The global process is

schematized if Fig. 1.

3.2. Extraction of the atrial activity

There exist several techniques designed to extract the

AA of AF episodes from ECG registrations. The limitation

of having only one-lead ECG obliged us to discard those

techniques based on the spatial diversity of multi-lead sys-

tems, such as blind source separation [8]. On the contrary,

the average beat substraction technique [10] works effi-

ciently with one-lead ECG , so this has been the technique

chosen to extract the AA.

3.3. Time-frequency distributions

After extracting the AA from the ECG, we calculate

nine time-frequency distributions of the AA. All the cal-

culated distributions belong to the Cohen’s class [11], and

are the following: spectrogram, Wigner-Ville, pseudo-

Wigner-Ville, Margeneau-Hill, pseudo-Margeneau-Hill,

Page, pseudo-Page, Zhao-Atlas-Marks and Choi-Williams.

All distributions have been calculated with the same reso-

lution of 1sec in time and 1Hz in frequency. Given that

the number of samples in every ECG signal is elevated (ap-

proximately equal to 60000), the calculation of distribution

has been applied on signal subdivisions of 1024 samples in

length. This allows us to reach the aforementioned spectral

resolution and, at the same time, the computational load of

calculations is considerably reduced.

3.4. Construction of sequences

The next step, after calculating the time-frequency dis-

tributions, consist of obtaining from every one of them the

time sequences of the fp and SC parameters. Since a time-

frequency distribution can be considered as a sequence of

spectra calculated in consecutive moments, to construct the

time sequences of fp and SC we extract their values from

the distinct calculated spectra of the time-frequency distri-

bution.

The value of fp is obtained extracting the frequency at

which the main peak occurs in a certain AA spectrum. The

second time sequence obtained from the time-frequency

distributions is the SC, which tries to estimate the level of

energy concentration of the AA around fp. It is calculated

as [12]:

SC =

1.17fp
∑

f=0.82fp

PAA(f)

0.5fs
∑

f=0

PAA(f)

(1)

where PAA is the power spectrum of the AA signal, f is

the frequencies vector, and fs is the sampling frequency.

3.5. Approximate entropy

The ApEn measures the complexity of the time se-

quences. It quantifies how predictable a time sequence

is depending on how many times similar patterns are re-

peated [4, 5].

Let x[n] be a time sequence of length equal to N . The

distance between two of its subsequences Xm(i), Xm(j)
of m length is defined as:

d[Xm(i), Xm(j)] = max(|x(i + k) − x(j + k)|) (2)

For a certain Xm(i) we calculate Cm
i (r) as:

Cm
i (r) =

nm
i

N − m + 1
(3)

where nm
i is the number of subsequences that fulfill

d[Xm(i), Xm(j)] < r with 1 ≤ i ≤ N − m + 1, j 6= i,
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and r is the parameter that defines the level of likelihood

between subsequences [4]. Next Cm(r) is calculated as

the mean of these Cm
i (r), that is:

Cm(r) =
1

N − m + 1

N−m+1
∑

i=1

Cm
i (r) (4)

Finally, the ApEn is defined as:

ApEn(x[n],m, r) = ln

{

Cm(r)

Cm+1(r)

}

(5)

4. Results

In table 1 the ApEn results of fp and SC time se-

quences are summarized in terms of mean and standard

deviation values and organized by time-frequency distri-

bution and patient group (N or T). In addition, these ta-

bles also contain the bilateral significance between pa-

tients groups that results from applying the t of Student

test to ApEn. As it can be observed, in three of the time-

frequency distributions, the bilateral significance obtained

in both fp and SC parameters is quite low (lower than

0.05), what allows us to reject the hypothesis of equal

means and conclude that there exist significative differ-

ences between N and T patients groups. Among these three

distributions, the spectrogram is the one that reach the least

bilateral significance in both fp and SC cases, remaining

lower than 0.001. Also the pseudo-Margeneau-Hill distri-

bution achieves low values of bilateral significance, which

is equal to 0.003 and 0.024 for fp and SC respectively.

These same values are obtained by the pseudo-Page dis-

tribution. The mean ApEn obtained from the three afore-

mentioned distributions is higher in the N group that in the

T group for both fp and SC parameters, what reveals the

greater complexity of the N-group signals. In the rest of the

time-frequency distributions, the resulting bilateral signif-

icance is too high to consider that a correct discrimination

between N and T groups can be done.

In table 2, the areas under the ROC curves of the ApEn

of fp and SC are expressed in percentages for every time-

frequency distribution. In the fp case, the highest area

is obtained by the spectrogram (87.9%), and it equals

to 80.4% in the pseudo-Margeneau-Hill and pseudo-Page

distributions. In the rest of the time-frequency distribu-

tions, the area under ROC curves is lower than 60%. With

reference to the SC parameter, the highest area under the

ROC curve is achieved by the pseudo-Margeneau-Hill and

pseudo-Page distributions (83.9%), followed by the spec-

trogram (72.8%), Wigner-Ville (65.6%) and de la pseudo-

Wigner-Ville (61.2). The rest of time-frequency distribu-

tions take values lower than 60%.

The Receiver Operating Characteristic (ROC) curves of

the distributions that obtained the best results (spectro-

gram, pseudo-Margeneau-Hill and pseudo-Page) are de-

picted in Fig. 2 for fp and SC. A suitable choice of the

fp

N group T group

Mean STD Mean STD Sig.

SP 0.1311 0.0314 0.0788 0.0346 <0.001

WV 0.0470 0.0150 0.0566 0.0264 0.239

PWV 0.0514 0.0182 0.0579 0.0227 0.394

MH 0.0360 0.0054 0.0346 0.0071 0.533

PMH 0.0178 0.0043 0.0121 0.0051 0.003

PG 0.0360 0.0054 0.0346 0.0071 0.533

PPG 0.0178 0.0043 0.0121 0.0051 0.003

ZAM 0.0398 0.0180 0.0375 0.0169 0.727

CW 0.0385 0.0171 0.0352 0.0156 0.576

SC

N group T group

Mean STD Mean STD Sig.

SP 0.4822 0.0743 0.4009 0.0976 <0.001

WV 0.2029 0.0354 0.2297 0.0568 0.142

PWV 0.2358 0.0370 0.2500 0.0501 0.390

MH 0.2256 0.0831 0.2289 0.0675 0.904

PMH 0.1932 0.0445 0.1362 0.0766 0.024

PG 0.2256 0.0831 0.2289 0.0675 0.904

PPG 0.1932 0.0445 0.1362 0.0767 0.024

ZAM 0.1493 0.04718 0.1365 0.050 0.484

CW 0.1443 0.0313 0.1332 0.0349 0.368

Table 1. Mean, standard deviation of fp and SC,

and bilateral significance between T and N groups of

spectrogram(SP), Wigner-Ville (WV), pseudo-Wigner-

Ville (PWV), Margeneau-Hill (MH), pseudo-Margeneau-

Hill (PMH), Page (PG), pseudo-Page (PPG), Zhao-Atlas-

Marks (ZAM) and Choi-Williams (CW) distributions

threshold allow us to distinguish correctly in a high per-

centage of cases between N and T AF patients. For exam-

ple, if we pay attention to the fp ROC curve of the spectro-

gram we see that it is possible to choose a threshold so that

the 81.3% of the N type patients are correctly classified

with a false alarm probability equal to 21.4%. With regard

to the SC ROC curve of of the pseudo-Margeneau-Hill

distribution, we see that it is possible to choose a threshold

so that the 87.5% are correctly classified with a false alarm

equal to 21.4%.

5. Conclusions

The study carried out lead us to conclude that it is

suitable to apply complexity measures to sequences ob-

tained from time-frequency distributions in order to clas-

sify the AF type as terminating or non-terminating. Three

of the studied time-frequency distributions (spectrogram,

pseudo-Margeneau-Hill and pseudo-Page) are useful to

discriminate between patients groups. The mean ApEn

of fp and SC obtained from these three distributions is

higher in the N group that in the T group, thus a greater

complexity of the non-terminating AA signals is revealed.
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Figure 2. ROC curve of the ApEn of (a) fp and (b) SC

obtained from spectrogram, pseudo-Margeneau-Hill and

pseudo-Page distributions

fp SC

ESP 87.9% 72.8%

WV 58.0% 65.6%

PWV 56.3% 61.2%

MH 57.8% 50.1%

PMH 80.4% 83.9%

PG 57.8% 50.2%

PPG 80.4% 83.9%

ZAM 50.4% 58.0%

CW 53.6% 58.0%

Table 2. Area under the ROC curves of the

ApEn of fp and SC sequences obtained from spec-

trogram (SP), Wigner-Ville (WV), pseudo-Wigner-Ville

(PWV), Margeneau-Hill (MH), pseudo-Margeneau-Hill

(PMH), Page (PG), pseudo- Page (PPG), Zhao-Atlas-

Marks (ZAM) and Choi-Williams (CW) distributions.

The complexity study of other time-frequency distribution

parameters and the application of other complexity estima-

tors are possible subjects of future research.
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