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Abstract 

The Anaerobic Threshold (AT) is one of the best 

parameter to quantify aerobic capacity at sub-maximal 

dynamic physical exercise power levels. By the other side, 

there is a function in nonlinear dynamics called 

Aurocorrelation Function (ACF). We measure the AT, in 

this work, in a non-invasive way, using the ACF. The 

results exhibited a perfect correlation with previous 

works that used the same set of data, but the method now 

proposed is faster and easier to apply, producing an 

almost instantaneous visual outcome. 

1. Introduction 

The Anaerobic Threshold (AT) is a changing point in 

the physiological state that can be identified during 

dynamic physical exercise [1]. It can be measured 

directly, with invasive procedures but we have been 

looking for a non-invasive way of doing the task. A first 

trial was made using an Auto Regressive Integrated 

Moving Average Model (ARIMA) [2-4], followed by a 

second trial that used the Kolmogorov-Sinai entropy (K-

S) [5, 10]. Both methods were based on the findings that 

changes in cardio respiratory variables, including heart 

rate variability (HRV), occur at this point [11].  

The Autocorrelation Function (ACF) is a mathematical 

tool used in dynamic to study the stationarity of time 

series and to produce the time lag used in the 

reconstruction of a chaotic attractor, if one is present.  

Let us suppose a time series x1, … , xN. We then define 

the Autocovariance coefficient at lag k, ck, as: 
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x   is the overall mean, defined as: 
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 We then define the Autocorrelation Function, ACF(k) 

as:   
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 The ACF is a useful statistical tool that measures 

if earlier values in the series have some relation to later 

values. As many statistical measures were built for 

independent data, it is important to know if they are really 

independent. A diagram called “correlogram” where we 

can see these effects can be built. The correlogram is a 

plot of the ACF(k) versus k, the time lag.  
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Fig 1: Correlogram for one of the individuals studied, 

showing the dependence on the number of points 

considered on the computations. 

We define the decorrelation time lag as the smallest 
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value of k that makes ACF(k) < K, where K is usually 

taken as 0.5 or 1/e, e = 2.71828… [12, 13]. In this work, 

we find the best value for K to be 0.55. But the 

correlogram depends on the number of points (n), as can 

be seen from the fig (1) above, where one of the series 

studied in the present work is showed. As a consequence, 

the decorrelation time lag also depends on n. 

The main goal of the present work is to evaluate the 

tool: the decorrelation time lag when applied to HRV 

time series in different random powers levels of dynamic 

exercise, in order to quantify the AT in healthy 

individuals. The results were compared to the AT values 

obtained using ARIMA model. 

2. Methods 

We used the same time series in all works [2-6]. They 

were obtained from ten healthy male volunteers (23 ± 2.0 

years), who exhibited a sedentary life style.  Dynamic 

exercise tests (discontinuous steps) included two 

experimental protocols (undertaken two days apart), that 

is, progressive (EPI) and random (EPII) power levels, 

lasting fifteen minutes, with a rest period among them. 

We measured the RR intervals, in seconds, from each 

one of the following situations: at rest, in supine and 

seated positions; in the last position during exercise, using 

an electromagnetic braked cycle-ergometer at several 

power levels (W). A specific software was used to detect 

R waves of ECG signals and the respective periods [14]; 

the RR interval were then obtained. For each one of the 

studied powers, the n-time lag was computed, using 

computational programs written and compiled for the 

present work. All the series were displayed in a graphic, 

allowing a visual outcome. Such computational programs 

were fed by the original RR intervals time series, 

dropping out the first and the final 1.5 minutes in order to 

assure a stability period for the studied signal.  

3. Results 

RR interval time series (N=191) obtained from the ten 

men with both protocols, EPI and EPII, were analyzed in 

order to estimate the decorrelation time lag for each set of 

data. We have plotted the values of the decorrelation time 

lag against the number of points for each series of data. 

The results were not encouraging for the progressive 

protocol but were excellent for the random powers level 

protocol. The fig (2) bellow shows the outcomes for the 

later protocol: 
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Figure 2: Diagrams of the time lag as function of n for 

all the ten individuals. The thickest line corresponds to 

the AT predicted by ARIMA. 

The decorrelation time lag showed, in a 

phenomenological way, a very distinct change in the 

system response patterns at a specific power. The line 

grows up, above the others, for all indivuduals. This 

occurred in a power value, which corresponds to the AT. 

The results obtained from this method and ARIMA 

method are perfectly correlated: they match for all the 

individuals. 

4. Discussion and conclusions 

As in our previous work, we have described an 

alternative non-invasive way to obtain the Anaerobic 

Threshold. Our conclusions can be summarized as 

follows: the decorrelation time lag exhibited, in a 

phenomenological way, a different pattern, showing a 

graphic line completely different from the others at power 

values that agreed with the AT obtained from the ARIMA 

model. This difference can not be explained just by the 

larger number of points in the series corresponding to the 

AT, as, for some cases, series with more points than that 

indicated by ARIMA do no exhibited the same behavior. 

Also, the “growing up” behavior shows itself for values 

of n smaller than the maximum value, at points where 

many others series still have data. We reached the 

conclusion that this method can be used to obtain the AT. 

The advantages of the decorrelation time lag are:  

-  It involves a fast computational procedure. 

- It does not require elaborate statistical analysis. This 

means that it does not need a statistician to assist the 

work. 

- It is easier to apply than the K-S method. 
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