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Abstract 

 The detrended fluctuation analysis (DFA) [1] method 

is used to quantify the fractal-like scaling properties of 

the variability of cardiac parameters, i.e. R-R interval 

data.    

DFA has proved to be a useful index in predicting 

survival in heart failure. Several authors have proposed 

to break the numerical series in two zones with linear 

slopes.. The breakpoint between segments is empirically 

situated at log n equals 1,1.  

We have used the DFA method to process  records of  

passive head up tilt (H.U.T.) test done to  patients who 

have suffered one or more faint episodes. 

Slopes of numerical series obtained from real signals 

neither change  at a specific  point,  nor have only one 

breakpoint, especially if they correspond to pathological 

records. On the contrary some of them  present abrupt 

changes in slope. This fact could be hidden in the 

traditional computation if changes in slope have different 

sign, but are detected in our approach. 

 A method that tracks the DFA function, detect 

breakpoints, and  obtain a continuous set of lines between 

them, and their corresponding slopes, is proposed. 

 

1. Introduction 

Detrended Fluctuation Analysis had allowed applying 

fractal and complexity to non stationary series . DFA was 

used with RR Interval variability [2] to discriminate 

between normal and congestive heart failure using very 

long series (24 hours)[1] [3] . More recently it was used 

in shorter series between 300 to 500 heart beats [4] [6].  

DFA method requires to do a cumulative  summing to 

the original time series. Then the series is cut into several 

segments and the degree of dispersion from a local trend 

is measured. This is done to each segment and repeated 

with different segment lengths. 

 In equations: 
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yn is the local trend and n is the box size. 

 

We obtain the average fluctuation Fn as a function of  

the box size n. A linear relationship  on a double log 

graph reveals a scaling factor between those magnitudes. 

If the points are aligned the slope of this line represents a  

scaling exponent α, . An α of 0.5 corresponds to white 

noise, α = 1 represents 1/f noise and α = 1.5 indicates 

Brownian noise or random walk. A good linear fit on the 

entire range of n  corresponds to a  the single exponent α 

describing the correlation properties of the  heart rate data 

This α  is known as the fractal dimension and has been 

presented as a useful value for diagnostic purpose. 

Scaling exponent α, calculated from healthy subjects use 

to be around the unity ; disclosure from this value is a 

marker of pathology. However in some cases, several 

authors have found that the DFA plot was not strictly 

linear but rather consisted of two distinct regions of 

different slopes [3] [4] α1 α2 representing short and long 

time correlations. The frontier between the two zones has 

been empirically set  at n equals 11 beats [5]. Other 

values like 12 , 13 and 16 beats [6] [7] [4] [1] are also 

recommended. Both slopes estimations are affected by 

the election of one or another breakpoint, although the 

log(n) partially hides the differences.  These slopes, 

which are the estimation of  α1 and α2, are altered in 

disease, therefore, a different pattern with one or more 

breakpoints could be  expected.  If we miss one 

breakpoint from a pathologic study the slope probably 

don’t differ much from a normal case.  Our approach is to 

detect these breakpoints directly from the data series, as 

the points where the dynamics changes without taking 

into account any assumption a priori. 
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2. Materials and Methods 

2.1.   Algorithm Description 

Our method finds the minimal number of linear 

segments that fits a cloud of points with a given tolerance. 

Each point  is defined by its coordinates (xi, yi).   

 

x=[x1.......xi...................xn] 

y=[y1.......yi...................yn] 

 
Beginning with the first pair of points we computes the 

tangent  
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θ =[θ1....... θ i.................. θ n-1] 

 
 

 if (θi-θi-1)< threshold (xi+1,yi+1) is accepted 

           else xi+1 yi+1 is a new breakpoint 

 
Then we continue with the second and third points , 

and so on, to finish with  a tangent series related to angle 

information. If  all of the points correspond strictly to a 

linear segments they must share the same angle . For each 

element we then check that the difference between 

adjacent values, which corresponds to a measure of 

misalignment, is lower than a certain threshold we had 

previously established. If a point does not fulfill this 

condition, a break point is included and the point is 

rejected. The last is now the first point of a new linear 

segment. And the process continues till the last point is 

evaluated.  

Each segment is formed with points that are aligned 

and now a linear regression is done to each of them. For 

each segment a slope and the norm of residuals are 

obtained. 

If  data is truly linear, our algorithm does not break it, 

but if it is not, several breakpoints can be included. If the 

last is true a better fitting can be expected. 

 

2.2  Data and preprocessing 

To evaluate our algorithm, we use records from 

normal controls and from subjects that suffers faint 

episodes. 

 To study the adaptation mechanisms in their 

cardiovascular system we use a procedure named tilt 

tests. With the aid of a tilt bed a passive tilt of the patient, 

head up, in angles between sixty to eighty degrees is 

reached. This maneuver leads to hypotension and 

eventually to a syncope, in this case we refer to it as a 

positive Tilt Test  (TT+), if not as a negative Tilt test  

(TT-). Signal acquisition during tilt test includes 

electrocardiogram (ECG) and continuous blood pressure 

curve (CBPC) .  

Two signals are then available as digital data for 

computer processing: beat to beat interval and beat to beat 

systolic and diastolic BP. They are obtained respectively 

from ECG and CBPC. This implies detection of R wave 

on ECG to compute intervals between them and 

determination of maximum and minimum BP for every 

heart beat on CBPC. 

An automatic method for the detection of  R wave on 

ECG is applied to the data. A posteriori manual editing of 

the marks of occurrence of the R waves is performed by 

experts. The intervals between them were used to form 

the RR event series in function of beat number.     
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Fig. 1 - RR Interval from a normal control. We can see 

also that the series is not stationary 

3. Results 

We then compute the DFA and apply our method to 

find the natural breakpoints and slopes. The result 

corresponding to the example in Fig 1. can be observed in  

figure 2. In this example, the first breakpoint is located at 

a value of log(n) < 1, and the slope at the intermediate 

zone α2, is very close to one, as expected since it belongs 

to a normal subject. Close to each segment the 

corresponding slope and the norm of the residuals are 

annotated. In the top of the chart, the slope that results 

using all the points, is shown.  

 We can see that local slopes are different from that 

value. The notable reduction in the residuals indicate a 
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better adjust using our algorithm  and confirm our 

previous hypothesis. 

 

Fig. 2- DFA and our segmentation algorithm on  normal 

control. The slope that results from using all the points is 

=1,1921 and the norm of the residuals= 0.28.   α1 = 

1,4805 and α2= 1.032 and the residuals = 0,057 five times 

lower approximately 
 

Now we turn to a subject that has done a TT+ with 

autonomic origin 
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Fig. 3- RR Interval  record from a subject with TT+. 

Comparing with Fig 1. ‘high frequency’ components are 

missing. 

 

And the corresponding DFA followed by our 

segmentation algorithm results in the following figure. In 

this case the first breakpoint is also < 1. 

 The slope in the intermediate zone is far from the unit, 

revealing a pathologic case. 

 

 

Fig. 4- DFA and our segmentation algoritm -TT+. The 

slope  thats results from using all the points is=0,86 and 

the norm of the residuals= 0.297.   α1 = 2,042 and α2= 

0.638 and the residuals = 0,067  

 

 

4. Discussion and conclusions 

 
We are not into confronting with others authors, but to 

prevent using DFA in a mechanical manner, without 

taking into account the real nature of the data. Our 

method brings a methodological improvement when 

trying to fit the model to the data and not the other way 

around.  

Our algorithm is very simple, but capable of detecting 

natural breakpoints and bringing us the real slope in the 

different interest zones.  It can be applied to normal, but 

to pathological series also. 
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