
Toward Provably Correct Models of Ventricular Cell Function

RL Owen1, S McKeever2, J Davies2, A Garfinkel3

1Department for Continuing Education, University of Oxford, Oxford, UK
2Computing Laboratory, University of Oxford, Oxford, UK

3Departments of Medicine (Cardiology), Physiological Science, and Physiology, Cardiovascular

Research Laboratory, University of California School of Medicine, Los Angeles, CA, USA

Abstract

Researchers in cardiac mechanics and electrophysiol-

ogy develop computer models for analyzing complex ex-

perimental data. A key issue is model correctness: for-

mally verifying that the model is performing as intended.

We present an application of formal software engineer-

ing methods to an established electrophysiology model:

the Beeler-Reuter (B-R) model of the mammalian ventric-

ular myocyte. A formal specification fragment for the B-

R model is developed, which captures the key drivers of

the transmembrane potential, including four ionic currents

(INa, Is, Ix1
, and IK1

) and a representation for the intra-

cellular calcium ion concentration ( [Ca] ). Correctness-

preserving transformations can be used to refine the spec-

ification into executable code, thereby assuring a prov-

ably correct implementation. The mathematical and log-

ical tools presented here provide a rigorous approach to

proving the correctness of ventricular cell models, thereby

improving program implementation and verification.

1. Introduction

The sequencing of the human genome is providing new

insights into the structure and function of complex biolog-

ical systems [1]. These systems, composed of hierarchies

of modular components and protocols interconnected by

layers of feedback regulation [2, 3], form intricate net-

works that are robust to imprecise components or pertur-

bations in the environment, but are fragile to trivial mu-

tations or unexpected perturbations for which the system

was not optimized. For example, the fraction of possible

amino acids sequences that yield functioning proteins is

vanishingly small [4], so that a single genetic mutation can

be lethal, such as the KCNQ1 single nucleotide polymor-

phism (SNP) that underlies congenital long-QT syndrome.

Given this complexity, the challenge for cardiac re-

searchers is to understand cardiac structure and function

using computational models for analyzing large sets of

experimental data across a range of spatial and temporal

scales. A current focus is on standard tools and notations

for storing and communicating these models. One exam-

ple is CellML [5], an open XML-based language designed

to address model standardization and publishing inaccura-

cies [6], the latter being of two types: (a) errors introduced

in the computer code or its description during the publish-

ing process; or (b) programming errors in the code itself.

These errors can lead to a knowledge gap that can propa-

gate to subsequent versions of the code.

Even if the computer code correctly implements the

published description given in the paper, improved exper-

iments and data can cause a mismatch between model re-

sults and experimental observations. Computational mod-

els are therefore under continuous revision, both to im-

prove performance and to match improved experimental

results. Many of these revisions are done on an ad hoc

basis, leading to a second knowledge gap in the form of a

library of models whose correctness is largely unknown.

While standardization efforts such as CellML can ad-

dress the first type of publishing error, the question of

model correctness due to programming errors or poorly-

documented revisions remains. A method for proving

model correctness should address the following: (a) pro-

viding a provably correct path between abstract models;

(b) providing a provably correct path from the abstract

models to executable code; and (c) providing a library of

reusable software combinators which can be instantiated

to create complex cellular and even whole organ models.

This paper represents a first step toward the development

of the method, by applying formal software engineering

methods to the Beeler-Reuter (B-R) model of the mam-

malian ventricular myocyte [9]. The modeling and proof

approach described here provides a rigorous foundation for

the otherwise ad hoc specification and design of computa-

tional models.

Section 2 presents an overview of the methods, includ-

ing a review of the Z notation and the B-R model. In Sec-

tion 3, a formal specification for the B-R model is pre-

sented. Section 4 discusses the results and conclusions.
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2. Methods

Formal software engineering methods use mathematical

objects and notation to model complex systems. A formal

specification describes system properties at higher levels

of abstraction using these mathematical objects and nota-

tion [10], allowing rigorous system verification. The for-

mal notation is comprised of: (1) rules for determining the

grammatical well-formedness of sentences (syntax); (2)

rules for interpreting sentences in a precise, meaningful

way within the application domain (semantics); and (3)

rules for inferring useful information from the specifica-

tion (proof theory).

2.1. The Z notation

Z is a formal notation that combines discrete mathemat-

ics and logic with macro-like abbreviations called schemas

[11]. Z includes a schema calculus that allows complex

schemas to be constructed from simple schemas, and a re-

finement calculus for translating schemas into executable

code. The basic Z notation is supplemented by a collec-

tion of mathematical theorems, axioms and laws describ-

ing sets, tuples, relations, functions, sequences and their

operators that provide for the formal proof of many system

properties. This proof strategy ensures that the data type

requirements are consistent and that the operations are ap-

plied only within their domains.

The Z notation can support a variety of complex sys-

tems and modeling methods. For example, Z can model

system behavior as an abstract formal specification, or it

can form a design specification comprising modules, data

types, procedures, functions, classes and objects.

2.2. Beeler-Reuter model

An early cardiac cell model was developed by G.W.

Beeler and H. Reuter [9], using four individual, discrete

ionic currents and six Hodgkin-Huxley type gating vari-

ables. In contrast to the earlier Purkinje fiber models of

Noble [7] and R.E. McAllister, D. Noble and R.W. Tsien

[8], the B-R model focused on the mammalian ventricular

myocyte. The currents of the B-R model include: (1) an

initial fast inward sodium current INa, similar to the one

used by Hodgkin and Huxley; (2) a time-dependent out-

ward current Ix1
; (3) a time-independent potassium out-

ward current IK1
: and (4) a secondary slow inward current

Is, the latter carried primarily by calcium ions which is re-

sponsible for cardiac cell contraction and the action poten-

tial (AP) plateau. Thus, the total ionic current in the B-R

model is given by four currents and uses eight variables:

membrane potential, six ionic gates ( m, h, j, x1, f and j )

and the intracellular calcium concentration ( [Ca] ).

Figure 1. A schematic diagram describing the current

flows across the cell membrane that are captured in the

Beeler-Reuter model (after [5]).

3. Results

3.1. Abstract specification

A basic excitable cell, such as a cardiac myocyte, is

modeled as a relation between types representing currents

and potentials:

[CURRENT]

CHANNELS == P CURRENT

POTENTIAL : P Z

As shown in Figure 1, these currents and potentials, rep-

resenting continuous, time-dependent signals, provide the

minimum functionality required of any excitable cell.

The cell model (system state) is comprised of a trans-

membrane potential and a set of ionic currents:

Cell

transmembrane : POTENTIAL

currents : CHANNELS

The transmembrane potential is defined as the potential

drop across the inner and outer surfaces of the cell mem-

brane. The ionic currents are mediated by sodium (Na+),

potassium (K+), and calcium (Ca2+) ions.

An initialization schema defines the state of the cell after

it has been initialized:
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CellInit

Cell′

transmembrane′ = 0 ∧ currents′ = ∅

where ∅ denotes the empty set.

An action is a temporal change in transmembrane po-

tential triggered by membrane depolarization. Following

depolarization, the absolute and relative refractory periods

are modeled by a gate function that maps a pair of poten-

tials and an ionic channel to an ionic channel:

gate : (POTENTIAL × POTENTIAL

× CHANNELS) 7→ CHANNELS

An action function models the response of the cell to de-

polarization by mapping the ionic currents to a potential:

action : CHANNELS 7→ POTENTIAL

The following operation schemas uses gate and action to

depolarize the cell:

DepolarizeCell0
∆Cell

v? : POTENTIAL

v? ≥ 0
(v?, transmembrane, currents) ∈ dom(gate o

9 action)
transmembrane′ =

(gate o
9 action) (v?, transmembrane, currents)

DepolarizeCell0
∆Cell

v? : POTENTIAL

v? ≥ 0
(v?, transmembrane, currents) 7→

transmembrane′ ∈ gate o
9 action

The predicates check that the action is positive and

in the domain of the gate function. The function

gate (v?, transmembrane, currents) updates the ionic cur-

rents according to the input potential and the present trans-

membrane potential and ionic currents. The function

action currents′ updates the transmembrane potential cor-

responding to the updated ionic currents.

3.2. Concrete design

Using the abstract specification, we now derive a con-

crete design which removes non-determinism and enriches

the model, by adding structure to the ionic currents and in-

cluding a representation for the intracellular calcium con-

centration. As shown in Figure 2, the concrete design rep-

resents the minimum components and functionality of the

B-R cell model [9].

Figure 2. A schematic diagram of the ionic channels

and ion concentrations for a four-channel cell model.

The shaded regions denote the components of the Beeler-

Reuter model.

The BR model includes a type for the intracellular cal-

cium ion concentration:

CONCENTRATION : P N

As with the currents and potentials, the concentration may

be continuous and time-dependent. The BR cell is com-

prised of a transmembrane potential vm, four ionic chan-

nels channels, and an intracellular calcium concentration:

BRCell

vm : POTENTIAL

channels : seq CURRENT

cai : CONCENTRATION

#channels = 4

The BRCell is initialized as follows:

BRCellInit

BRCell′

cai′ = 0 ∧ vm′ = 0 ∧ channels′ = 〈 〉

where 〈 〉 denotes the empty sequence. Note that the predi-

cates of BRCell and BRCellInit ensure that the intracellular

calcium concentration cannot take negative values.

Next, we define a function that updates the intracellular

calcium concentration:

calcium : (seq CURRENT × CONCENTRATION)
7→ CONCENTRATION

and a new gate function:

brgate : (POTENTIAL × POTENTIAL

× seq CURRENT) 7→ seq CURRENT

The DepolarizeBRCell operation schema is now given by:
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DepolarizeBRCell0
∆BRCell

v? : POTENTIAL

v? ≥ 0
(v?, vm, channels) 7→ channels′ ∈ brgate

ran channels′ 7→ vm′ ∈ action

(channels′, cai) 7→ cai′ ∈ calcium

3.3. Forward simulation

We now have two models or “views” of the B-R ventric-

ular myocyte, however, the question remains: are these two

views mathematically and logically consistent, both inter-

nally and with each other? A formal relation between Cell

and BRCell is given by a retrieve relation that is functional

from the concrete view to the abstract view:

BRCellRetrieveCell

Cell

BRCell

currents = ran channels ∧ transmembrane = vm

The retrieve relation BRCellRetrieveCell may be used to

formally prove that DepolarizeBRCell0 is correct with re-

spect to its corresponding abstraction. This involves prov-

ing that the retrieve relation is a total function, and that the

initialization and depolarization operations are correct:

∀BRCell • ∃
1

Cell • BRCellRetrieveCell

∀Cell′; BRCell′ • BRCellInit ∧

BRCellRetrieveCell′ ⇒ CellInit

∀Cell; BRCell • pre DepolarizeCell ∧

BRCellRetrieveCell ⇒ pre DepolarizeBRCell

∀Cell; Cell′; BRCell; BRCell′ • pre DepolarizeCell ∧

BRCellRetrieveCell ∧ DepolarizeBRCell ∧

BRCellRetrieveCell′ ⇒ DepolarizeCell

Once we have proved the correctness of our concrete de-

sign with respect to the abstract specification, we may ei-

ther proceed with another round of design and refinement,

using our first concrete design as the abstract specification,

or translate the concrete design into executable code.

4. Discussion and conclusions

We have developed a formal specification fragment for

the B-R mammalian ventricular myocyte. From a theo-

retical perspective, our method improves the formulation

and proof of computational models and may be extended

to more complex biological systems.

One advantage of the formal specification is that imple-

mentation details can be ignored in order to focus on the

most important aspects of the problem. This is particularly

important for computational models that are that too novel

or complex to develop by intuition or by modifying exist-

ing code. A second advantage is that it provides two very

important proof opportunities [11], which demonstrate that

the data type requirements are consistent and that the oper-

ations are applied only within their domains. These proofs

are available prior to code development, testing and pub-

lication, and have the potential to reduce model develop-

ment time and improve model documentation.

The formal specification and modeling process de-

scribed here can be readily extended to more complex cell

models, as demonstrated here by the addition of the in-

tracellular calcium concentration. In addition, we are de-

veloping methods to formally evolve computational mod-

els in response to improved or more accurate experimen-

tal data. By abstracting these evolutions, along with re-

finements and translations, within a common mathematical

structure, we hope to demonstrate tools and methods that

can simplify the design, development, and maintenance of

computational models of the heart.
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