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Abstract 

We developed an automated continuous real-time QTc 

interval monitoring algorithm for the critical-care setting. 

The performance of the QT interval measurement 

algorithm was tested on the PhysioNet adult QT ECG 

dataset (n=105), and on a pediatric ECG dataset (n=20) 

and a neonatal dataset (n = 24) recorded from intensive 

care units. The algorithm performance is measured by 

sensitivity (the ability to measure the QT interval), and 

accuracy (the difference between the automated QT 

measurements and cardiologists’ manual annotations). 

We obtained 92% sensitivity in the adult group, 85% in 

the pediatric group and 75% in the neonatal group. On 

the 95 adult cases which had both an algorithm and a 

cardiologist measurement, the mean difference was 1 ms 

with a standard deviation of 35 ms. On the pediatric 

ECGs, the mean difference was -12 ms with a standard 

deviation of 20 ms. In the neonatal cases, the mean 

difference was -6 ms with a standard deviation of 12 ms. 

 

 

1. Introduction 

The American Heart Association has recently endorsed 

a practice standard for ECG monitoring of critical care 

patients which includes a recommendation for QTc 

interval surveillance for patients taking potentially 

proarrhythmic medications [1].  Current hospital practice 

in the critical care setting is usually manual measurement 

of QT (and RR interval for QTc computation) on a single 

beat by the clinical staff once per 8-hour shift or per day. 

This practice is problematic due to the beat-to-beat 

variability of both repolarization and manual 

measurement accuracy, and may lead to missed or false 

positive detections of QT prolongation. We have created 

a continuous real-time QT and QTc interval monitoring 

algorithm to meet this clinical need [2]. The current paper 

focuses on the performance of this real-time QT interval 

monitoring algorithm.  

2. Study Population 

The PhysioNet QT dataset used for the adult study 

population is a publicly available database which has 

been annotated by cardiologists for QT interval [3]. This 

dataset consists of 105 cases, each 15 minutes long with 

two ECG channels. It contains a variety of T wave 

morphologies in cases chosen from the MIT-BIH 

arrhythmia, supraventricular arrhythmia, long-term, and 

ST change, BIH normal and sudden death, and European 

ST-T databases [4]. 

 In addition to the PhysioNet QT dataset, pediatric 

2-channel ECGs (n = 20) were recorded in a pediatric 

intensive care unit (PICU) from patients aged 2 weeks to 

15 years old, and single-channel neonatal ECGs (n = 24) 

were recorded in a neonatal intensive care unit (NICU) 

from newborns to 2 week old patients. 

3. Methods 

The ECG signal from patients being monitored in the 

critical care setting contains significant amounts of 

muscle and motion artifacts, and the locations and 

number of electrodes varies widely. The real-time QT 

interval measurement algorithm was designed to address 

these challenges. The algorithm is divided into several 

steps. The first step is to form an averaged beat for each 

lead in each 15-second time window from tightly 

clustered normal beats. The use of clustering rejects 

artifact, and signal averaging reduces noise. In the second 

step, the averaged beat waveforms from all leads are 

combined using a root-mean-squared (RMS) formula to 

compute a single RMS ECG waveform. Using an RMS 

waveform reduces the effects of respiratory axis shift and 

patient positional changes and allows for identification of 

earliest Q wave onset to latest T wave offset. Q onset and 

T offset are determined using a novel measurement 

technique [2,5,6]. For T wave offset, if the RMS ECG T 

wave amplitude is above a threshold, a virtual line is 

drawn from the peak of the T wave to a heart-rate 

adjusted point after the T wave.  The point along the ECG 

waveform with the maximum vertical distance from this 

line is determined to be the T offset. For Q onset, the line 
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is drawn from the R wave to a heart-rate adjusted point 

prior to the QRS complex. If T wave amplitude is too 

low, no algorithm measurement is made. Next, the QT 

interval is computed, and a short-term heart-rate is used 

for computation of QTc.  Finally, each minute, four 15-

second QT and QTc value pairs are examined, and one 

pair is chosen as the representative values for the minute. 

An example time series of the algorithm generated QT 

interval values is shown in Figure 1. 
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Figure 1. Example time series of 1-minute algorithm QT 

measurements passing through cluster of cardiologist beat-by-

beat QT measurements. 

4. Results 

The continuous QT monitoring algorithm is measured 

quantitatively by sensitivity and accuracy. 

The algorithm sensitivity reflects the algorithm’s 

ability to produce QT interval measurements on a given 

ECG.  Table 1 shows the average heart rate for the three 

databases, the number of cases annotated by the 

cardiologist, and the number and percent of cases in 

which a QT interval measurement was made by the 

algorithm in the vicinity of the cardiologist annotations.  

In the PhysioNet QT dataset, the cardiologist(s) 

deemed that 103 cases could be annotated for QT 

intervals.  Similarly, the QT algorithm does not make 

measurements when consistent beat morphology is not 

found, or when the T wave amplitude is too low and 

below a threshold.  Thus, in a computation of 

“measurement” versus “no measurement” against the 

cardiologist annotations, the algorithm sensitivity was 

92% (Table 1).  Algorithm measurements were made in 

85% of the PICU cases, and in 75% of the very noisy 

NICU cases. 

Cardiologist annotations were used as the “gold 

standard” reference QT values in the study.  In 103 out of 

105 records of the PhysioNet QT dataset, both Q onset 

and T offset have been annotated for approximately 30 to 

 

50 beats starting from the 10th minute by one and 

occasionally two cardiologists viewing both leads. 

Thirteen cases from the PhysioNet QT dataset that either 

had large difference between the two annotating 

cardiologists or were annotated inconsistently with regard 

to T versus U waves were re-annotated by the 

cardiologists who annotated the pediatric and neonatal 

cases. For the pediatric and neonatal ECG sets, two 

cardiologists annotated QT intervals in a 15-second 

period starting from the 7
th

 minute of the recording. 

Table 1. Algorithm Sensitivity: percent of cases that had 

an algorithm measurement in the vicinity of the 

cardiologist annotations in PhysioNet (n = 103), PICU 

(n = 20) and NICU (n = 24) QT datasets. 

 Mean 

HR 

N Number 

Measured 

Percentage 

 

PhysioNet  71 103 95 92% 

PICU 123 20 17 85% 

NICU 155 24 18 75% 

    

For each case, the mean values of the manual 

measurements i.e., the average of all beats from one or 

both (if present) cardiologists were used as the reference 

QT interval in the testing. 

The algorithm measurements used in the comparison 

were the average of the algorithm’s 1-minute QT 

measurements for each case that fell within a window 

starting slightly before the first beat of the cardiologist 

annotation and ending slightly after the last beat of 

cardiologist annotation. 

 On a case-by-case basis, the average algorithm QT 

interval was compared to the average cardiologist QT 

interval.  The mean and the standard deviation (SD) of the 

difference were computed (Table 2), and the pairs were 

fitted with a linear regression model (Figures 2,3,4). 

Table 2. QT Accuracy: algorithm QT minus Cardiologist 

QT for cases that had both cardiologist annotations and 

algorithm measurements. 

 N Mean Diff.  

(ms) 

Std Dev  

(ms) 

PhysioNet  95 1 35 

PICU 17 -12 20 

NICU 18 -6 12 

 

On the 95 cases in the PhysioNet QT dataset that had 

both an algorithm and a cardiologist measurement, we 

obtained a mean difference of 1 ms with a standard 

deviation of 35 ms. The mean difference on the pediatric 

data is -12 ms with a standard deviation of 20 ms. The 

mean difference in the neonatal dataset is -6 ms with a 

standard deviation of 12 ms. 
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Figure 2. Algorithm accuracy tested on the PhysioNet QT 

Database. Cardiologist QT (x-axis) vs. algorithm QT  

(y-axis). Cases with no matching algorithm or cardiologist value 

are shown along the axes.  Regression slope=0.95. 
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Figure 3. Algorithm accuracy tested on PICU dataset. 

Cardiologist QT (x-axis) versus algorithm measured QT 

(y-axis). Regression slope=0.82. 
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Figure 4. Algorithm accuracy tested on NICU dataset. 

Cardiologist QT (x-axis) versus algorithm measured QT 

(y-axis). Regression slope=0.85. 

 

Least-squares linear regression was used to show the 

relationship between the algorithm QT values and the 

cardiologist QT values, when measured by both. The 

resulting regression line has a slope of 0.95 for the 

PhysioNet dataset (Figure 2), which is very close to the 

desired identity line; for the PICU dataset, the slope is 

0.82; on the NICU data the slope is 0.85. The residual 

case order plot (Figure 5) for the PhysioNet dataset shows 

the 95% confidence intervals on the regression model 

errors.  Four cases fell outside the interval.  
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Figure 5. PhysioNet dataset linear regression residuals with 95% 

confidence intervals.  Four cases (dotted) fall outside the 95% 

confidence interval. 

The Bland-Altman plot for the PhysioNet dataset 

shows the algorithm minus cardiologist measurement 

differences versus the mean of the cardiologist and 

algorithm QT values.  The relatively flat regression line 

through the error data shows that the differences are 

randomly distributed, with no real trend versus QT value 

(Figure 6). 

5. Discussion and conclusions 

The algorithm approach which computes the RMS 

ECG and measures QT interval on this waveform rather 

than on the individual leads has proven to be an effective 

choice. We are in agreement with Lux et al. that 

measuring RMS ECG is more robust than measuring the 

ECG of an individual lead [9]. More importantly, the 

RMS ECG provides a global QT interval which is more 

meaningful than the localized QT interval reflected in one 

or two leads. As pointed out by Lux et al. the number of 

leads may modify the morphology of the RMS ECG, but 

it does not significantly alter the timing of QT onset and 

offset. The advantages of using RMS ECG have been 

shown and this technique has been widely adapted in QT 

research [10,11].  

y=0.82x+48 

y=0.95x+21 

y=0.85x+35 
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Figure 6. Bland-Altman plot shows the measurement difference 

versus mean of the cardiologist and algorithm QT measurements 

in the PhysioNet QT dataset.  Dashed horizontal lines indicate 

mean difference and mean +/- 2 standard deviations.  The 

regression line shows relatively little trend of the error vs. QT 

value. 

ECG monitoring in the pediatric and neonatal critical-

care setting is common and real-time QT monitoring is 

clearly a must [12,13,14]. However, neonatal ECG 

monitoring is usually done using a single lead which 

often contains significant artifact and noise due to 

unrestricted movements and crying. Since no previous 

computerized QT studies in the neonatal population have 

been reported, we were not sure what to expect with 

regard to the QT monitoring algorithm performance. The 

sensitivity of 75% and accuracy of –6 ± 12 ms obtained in 

the neonatal dataset is quite respectable considering 

analysis occurred on single lead ECGs with severe noise. 

In addition to having tested the annotated QT datasets 

from adult, pediatric, and neonatal populations, we have 

also stressed the QT algorithm by testing on a variety of 

arrhythmia, extremely noisy, paced, and long term ECG 

recordings. The results obtained show a good level of 

algorithm sensitivity, noise rejection, stability, and the 

ability to track changing QT intervals with less variation 

than error-prone single-beat measurements.  

We conclude that real-time QT interval monitoring is 

possible and should be adopted, and that an automated 

algorithm has been developed which provides accurate 

and robust QT surveillance. Our algorithm permits 

automated QT and QTc monitoring not only for adults but 

also for children and newborn babies in the critical-care 

setting. 
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