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Abstract

In this paper we will explain how one may use the bido-

main model to solve the inverse ECG problem in which

the transmembrane potential throughout the myocardium

is used as the unknown source. The accurate and efficient

numerical solution of this problem can, for example, pro-

vide valuable insight into the electrophysiological nature

of arrhythmias, the location and extent of ischemia and in-

farction, and can lead to new medical imaging devices.

This inverse problem is ill-posed, i.e. it is unstable

and, even under ideal conditions, it can be shown that

the transmembrane potential cannot be uniquely identified

from body surface potential maps (BSPMs) - additional in-

formation is needed. The purpose of this paper is to show

how the bidomain equations can be combined with apriori

information and suitable numerical techniques to partially

enforce uniqueness as well as stability in this inverse prob-

lem.

1. Introduction

The bidomain equations are widely accepted as an ac-

curate model for the electrical activity in the myocardium

[1]. They were introduced during the seventies by Tung,

Geselowitz, Miller and Schmitt et al., and have been stud-

ied by several scientists, see e.g. [2, 3] for further details.

In terms of mathematical symbols, this model may be ex-

pressed on the form

vt + I(v, q) = ∇ · (Mi∇v) + ∇ · (Mi∇u) in H, (1)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇u) = 0 in H, (2)

where H is the domain occupied by the heart, and v and u
represent the transmembrane and extra-cellular potentials,

respectively. The tensors Mi and Me are the intra- and

extra-cellular conductivities, and the function I incorpo-

rates the ionic currents into the model. More precisely, I is

a function of both the transmembrane potential v and the

ionic concentrations q.

In addition to (1)-(2), an equation governing the poten-

tial distribution outside the heart, i.e. in the torso T , is

needed:

∇ · (Mo∇u) = 0 in T, (3)

along with suitable interface and boundary conditions at

the heart and body surfaces, respectively.

The objective of this text is to show how one may com-

bine equations (2) and (3), biological knowledge about the

voltage distribution in the heart, BSPMs, and mathematical

techniques to approximately compute the transmembrane

potential v in the myocardium. We will present a series of

examples that indicate rather strongly that such methods

may possess the ability to approximately recover v, dur-

ing specific time intervals of the heart cycle, throughout

the myocardium. These experiments will not be limited to

ideal situations, but also include noisy BSPMs and cases in

which the position and volume of the heart are uncertain.

During the last three decades several researchers have

studied inverse problems arising in connection with ECG

recordings. In particular, the challenges of computing the

epicardial potential and the myocardial surface activation

wavefront have received a lot of attention. These prob-

lems are ill-posed in the sense that their numerical solu-

tions are highly unstable with respect to the involved input

data, see [4] and references therein. This is, of course,

also the case for the inverse problem in which one tries to

recover the transmembrane potential throughout the heart

from BSPMs. However, by invoking apriori knowledge

and suitable regularization techniques, it turns out that it

might be possible to approximately solve this problem.

2. Methods

According to lab measurements

v ≈ −90mV in H, (4)

in a healthy heart during the resting phase of the heart cy-

cle, see e.g. [5]. If an individual suffers from some sort of
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heart disease, for example a myocardial ischemia, (4) may

not hold. We will exploit this fact and combine it with the

so-called output least squares technique for inverse prob-

lems to recover v. That is, provided that d denotes a BSPM

recorded during the resting phase of the heart cycle, we

propose to compute v by solving the following problem:

min
v

Jα(v), (5)

where

Jα(v) = ‖u(v) − d‖2
L2(∂B) + α

∫
H

|∇v|2 dx, (6)

subject to the constraints

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇u) = 0 in H, (7)

∇ · (Mo∇u) = 0 in T, (8)

Mo∇u · ~n = 0 on ∂B, (9)

interface conditions on the heart surface ∂H. (10)

(Details about the conditions along ∂H can, e.g., be found

in [3]). Here, ~n denotes the outwards directed normal vec-

tor of unit length along the body surface ∂B, and the nota-

tion u = u(v) is used to emphasize that the solution u of

(7)-(8) depends on v. Furthermore, α is a small regulariza-

tion parameter and, due to (4), the second term in (6) has

been added to enforce v to have small gradients throughout

H .

In all the experiments presented below, we solved (5)-

(10) with the Landweber scheme:

vn+1 = vn − β∇Jα(vn), (11)

where vn denotes the nth approximation of the solution

v of (5)-(10) and β > 0 is a small parameter. A healthy

heart was used as initial guess in the iteration (11), i.e.

v0 = −90mV - see (4). Furthermore, in the inverse so-

lution process we neglected the fact that the conductivities

can change in the case of disease.

Note that the apriori information (4) is used extensively

in the scheme presented above. This means that we can

only expect this method to work properly for the resting

phase of the heart cycle. The challenge of computing the

transmembrane potential distribution in the heart during

other time intervals is, as far as we know, still an open

problem.

3. Results

In a healthy heart (4) holds. Thus, if the estimated rest-

ing transmembrane potential does not approximately sat-

isfy (4), then this would indicate some kind of malfunc-

tion. We have tested this procedure in the case of regional

ischemia.

The scheme has not been validated for real world data.

So far we have only tested it with synthetic BSPMs pro-

duced by solving the forward problem. More specifically,

the body surface potential d, present in (6), and the “true”

transmembrane potential vtrue in the heart wall were pro-

duced by the following procedure:
• An ischemia was inserted into the heart model.

• A forward simulation was performed. In 2D we solved

the time dependent bidomain equations and in 3D the sta-

tionary model (7)-(10).

• The body surface potential d and the “true” transmem-

brane potential vtrue in the heart during rest were recorded.

• All information, except d, about the bidomain simula-

tion was put aside.
Thereafter we used d and the scheme presented above to

investigate whether or not we could approximately recover

the “true” resting transmembrane potential vtrue.

Figures 1 and 2 contain the results obtained in 2D, with

various degrees of noise in the observation data d, for

transmural anterior and posterior ischemia, respectively.

In both cases, the technique provides rather accurate in-

formation about the “true” potential distribution. Note that

the results for the anterior ischemia are slightly better than

those computed for the posterior test problem.
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Figure 1. The “true” transmembrane potential vtrue and

estimates of it computed with noise free and noisy observa-

tion data (recorded at the body surface). Results obtained

in the case of transmural anterior ischemia.

The results generated for a 3D heart in torso model,

with uncertainties in the heart volume, are depicted in

Figure 3 and quantified in Table 1. Here, the numbers

−27,−14,+16 and + 33 % mean that the volume of the

heart used in the solution procedure of the inverse prob-

lem has been changed by −27,−14,+16 and +33 % com-

pared with the true volume (used in the forward simulation

to produce the body surface data d), respectively. These

experiments indicate that the proposed scheme is rather ro-

bust with respect to changes in the size of the myocardium.
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Figure 2. The “true” transmembrane potential vtrue and

estimates of it computed with noise free and noisy observa-

tion data (recorded at the body surface). Results obtained

in the case of transmural posterior ischemia.

“true” ischemia no perturbation

-27 % -14 %

+16 % +33 %

Figure 3. Results obtained in 3D for a heart in torso model.

The numbers above the individual figures quantify the vol-

ume perturbations of the heart model used in the inverse

solution procedure. (The size of the heart is scaled with

respect to the size of the panels).

Table 1. Results obtained in 3D with perturbations of the

heart volume. Note that, except for the result obtained with

a heart that is 33 % too large, the ratio Visch/Vheart between

the volume of the ischemia and the volume of the heart is

almost constant. (More precisely, Vheart is the volume of

the heart minus the volume of the atriums).
Perturbation -27% -14% 0% +16% +33%

Vheart (cm3) 124.3 146.1 170.4 197.3 226.9

Visch/Vheart 0.22 0.21 0.23 0.19 0.13

Effects of uncertainties in the position of the my-

ocardium are shown in Figure 4 and Table 2. Here, the

notation (0, 0,−1) means that the heart used in the recov-

ery process is positioned 1cm too low, and so on. Further-

more, we write COM for center of mass, i.e. the second

row in Table 2 contains the errors in the center of mass of

the estimated ischemia. For these rather moderate pertur-

bations, our scheme performed well. (Due to the extensive

volumes occupied by the lungs in our geometrical model,

it was difficult to run simulations with larger uncertainties

in the position of the heart).

“true” ischemia no perturbation

(0,0,-1) (0,0,1)

(-1,0,0) (1,0,0)

Figure 4. Results obtained with uncertainties in the posi-

tion of the heart.

In the examples presented above, the synthetic reference

799



Table 2. This table contains the errors in the center of mass

of the estimated ischemia for various perturbations of the

position of the heart.
Perturbation (0,0,-1) (0,0,1) (0,0,0) (-1,0,0) (1,0,0)

Error COM 0.54 cm 0.79 cm 0.34 cm 0.71 cm 0.44 cm

data d and vtrue were generated by either performing time

dependent bidomain simulations or solving the stationary

model (7)-(10) with conductivities Mi and Me that change

in the ischemic regions, see [6, 7] and [8]. Ideally, we

should of course have used real world data, measured in a

lab. However, such recordings are currently not available

to us.

Let us examine the influence of the model used to pro-

duce d and vtrue in the present investigation. (This topic is

linked to the concept of so-called “inverse crimes” in the

literature addressing inverse problems). Table 3 capital-

izes on this subject. More specifically, this table contains

the L2 errors in the inversely estimated transmembrane po-

tentials obtained by using different synthetic observation

data. Along with the results generated by applying bido-

main reference data, it contains the errors associated with

BSPMs produced by the stationary model (7)-(10). Both

results with conductivities being dependent and indepen-

dent of the ischemia are presented. In the latter case, severe

“inverse crimes” are committed - the models used to pro-

duce the observation data and to solve the inverse problem

are identical.

We conclude that using reference data produced by the

stationary model, with conductivities depending on the dis-

ease, and time dependent bidomain simulations yield ap-

proximately the same result. However, severe “inverse

crimes” must be avoided, they can easily lead to too op-

timistic conclusions.

Table 3. The relative L2 errors of the inverse solutions,

in the case of anterior ischemia, obtained with different

reference data. These numbers should be considered in

view of the fact that the L2 difference between the “true”

potential and the initial guess (v0 = −90mV) used in (11)

is 0.126.
Model used to produce reference data relative error

Bidomain model 0.111

Stationary model, ischemia dependent conductivities 0.112

Stationary model 0.103

4. Discussion and conclusions

We have investigated the possibilities for using comput-

ers, mathematics and BSPMs to compute the transmem-

brane potential in the myocardium during the resting phase

of the heart cycle. Our methodology is defined in terms of

an inverse problem for the bidomain equations.

In the case of regional ischemia, our scheme recov-

ered the transmembrane potential throughout the heart wall

rather accurately. Moreover, the method seems to be rather

robust with respect to noisy observation data and uncer-

tainties in the heart volum and position. Thus, even though

the problem under consideration is highly unstable, our ex-

periments (with synthetic data) indicate that it might be

solvable, provided that proper mathematical techniques are

used and that suitable apriori information about the voltage

distribution in the myocardium is taken into consideration.
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