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Abstract

In real situations, ECG recordings are often corrupted

by artifacts. Two dominant artifacts present in ECG are:

1) High frequency noise caused by electromyogram indu-

ced noise, power line interferences, or mechanical forces

acting on the electrodes; 2) Baseline wander that may be

due to respiration or the motion of the patients or the ins-

truments. These artifacts severely limit the utility of the

recorded ECG and thus need to be removed for better cli-

nical evaluation. Several methods have been developed for

ECG enhancement. In this paper, we proposed a new ECG

enhancement method based on the recently developed Em-

pirical Mode Decomposition (EMD). The proposed EMD-

based method is able to remove both high frequency noise

and baseline wander with minimum signal distortion. The

method is validated through experiments on the MIT-BIH

databases.

1. Introduction

The electrocardiogram (ECG) is the recording of the

cardiac activity and it is extensively used for the diagnosis

of heart diseases. There are basically two types of noise,

which are particularly significant during a stress test: the

baseline wander and the high frequency noise. In ECG en-

hancement, the goal is to separate the valid ECG from the

undesired artifacts so as to present a signal that allows easy

visual interpretation. Several approaches have been repor-

ted in the literature to address ECG enhancement [1, 2].

In this paper, we propose a new method for ECG en-

hancement based on the Empirical Mode Decomposition

(EMD) [3]. EMD decomposes a signal into a collection

of AM-FM components called Intrinsic Mode Functions

(IMF) that do not require any a priory known basis. The

EMD has been demonstrated as a good tool for artifact re-

duction in biomedical applications such as [4]. This moti-

vates us to use the EMD for ECG enhancement. So, the

contributions of this work lie in two aspects. First, the

use of EMD in ECG enhancement. Second, we develop

novel methods to remove both types of artifacts. The per-

formances of our algorithm are demonstrated through va-

rious experiments performed over several records from the

MIT-BIH Arrhythmia Database.

2. Methods

EMD decomposes the signal into a sum of IMFs [3]. An

IMF is defined as a function with equal number of extrema

and zero crossings (or at most differed by one) with its

envelopes, as defined by all the local maxima and minima,

being symmetric with respect to zero. So given a signal

x(t), it can be expressed as

x(t) =

N
∑

n=1

cn(t) + rN (t), (1)

where cn(t) is referred as nth-order IMF. By this conven-

tion, lower order IMFs capture fast oscillation modes while

higher order IMFs typically represent slow oscillation mo-

des. In (1), rN (t) is called the residue which is a constant,

a monotonic slope, or a function with only one extremum.

It can also be regarded as the last IMF.

For the denoising case, as the QRS complex spreads

over the several first IMFs, it cannot be performed by sim-

ply discarding lower-order IMFs. Our method to filter the

noise consists of four steps: 1) delineate and separate the

QRS complex, 2) use proper windowing to preserve the

QRS complex, 3) use statistical tests to determine the num-

ber of IMFs contributing to the noise, and 4) filter the noise

by partial reconstruction.

2.1. Delineation of the QRS complex

To preserve the QRS complex, we need a delineation of

the QRS complex. The QRS complex and the oscillatory

patterns in the first three IMFs are illustrated in Fig. 1 for

both clean and noisy ECG signals. The ECG signal is plot-

ted in solid line and the dash-dotted line is the sum of the

first three IMFs: d(t) = c1(t) + c2(t) + c3(t). Figure 1(a)

reveals that the QRS complex is bounded by the two zero

crossing points of d(t). Even in the noisy case (Fig. 1(b)),

this relation holds, which shows that the usage of the three

IMFs is a robust choice in the sense that it is not affected

by the noise.
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Figure 1. QRS delineation. The dash-dotted line is the

sum of the first three IMFs: c1(t) + c2(t) + c3(t). (a)

Clean ECG. (b) Noisy ECG.

Given the sum of the first three IMFs d(t), we can deli-

neate the QRS complex through the following procedure:

1) Identify the fiducial points. 2) Apply the EMD to the

noisy ECG signal. Sum the first three IMFs to get d(t). 3)

Find the two nearest local minima on both sides of the fidu-

cial point within a window. 4) Detect the two zero-crossing

points as boundaries of the QRS complex.

2.1.1. QRS complex windowing

Next, a window function is designed to preserve the

QRS complex. The window function is a time domain win-

dow applied to the first several IMFs corresponding to the

noise. A general design guideline for the QRS preserving

window function is that it should be flat over the duration

of the QRS complex and decay gradually to zero so that a

smooth transition introduces minimal distortion. Since the

window size is determined by the delineation results in the

first step, these window functions adjust their sizes accor-

ding to the QRS duration. A typical window function, and

that which is used here is the Tukey window

w(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2

[

1 + cos

(

π
|t| − τ1

τ2 − τ1

)]

, τ1 ≤ |t| ≤ τ2

1, |t| < τ1

0, |t| > τ2

(2)

where τ1 is the flat region limit and τ2 is the transition

region limit. When using (2), the flat region width 2τ1

is chosen such that it equals the QRS complex boundary

determined by the method in Section 2.1. The transition

region is set to avoid abrupt “cutoff” of the window and

reduce the distortions.

2.1.2. Determination of noise order

The number of the IMFs that are dominated by noise, re-

ferred to as the noise order, must be established. For ECG

signals, the contaminating noise is usually zero mean while

the signal is nonzero mean. This fact enables the noise and

signal to be separated in the EMD domain. Since lower

order IMFs contain the noise, we perform a statistical test

to determine if a particular combination of IMFs has zero

mean. The t-test is able to establish if the mean of the IMF

deviates from zero. In the t-test, we basically perform the

following hypothesis testing:

H0 : mean(cM
PS(t)) �= 0

H1 : mean(cM
PS(t)) = 0

(3)

where cM
PS is the M th order partial sum of the IMFs,

cM
PS(t) =

∑M

i=1 ci(t).
By selecting a certain significance level α, the null hy-

pothesis H0 is rejected in favor of the alternative hypothe-

sis H1 if the p value is less than α. Thus starting from the

first IMF, we perform a t-test on the partial sum cM
PS(t) for

M = 1, 2, . . . until we obtain a partial sum cPt

PS(t) that ac-

cepts the alternative hypothesis. The IMF order Pt at the

termination point indicates that there are Pt IMFs that con-

tribute primarily to the noise, and is thus set as the noise

order. The noise order indicates how many IMFs should

be removed.

In some cases the ECG itself has a mean close to zero.

Using the previous technique to determine the noise order

results in oversmoothing or loss of information since the

noise order will be very large. To avoid this potential pro-

blem, the noise order is set as

P = min(Pt, 5), (4)

where Pt is the noise order obtained from the t-test. The

rationale of (4) is that IMFs with order higher than 5 typi-

cally contain little or no noise. Thus this approach avoids

the oversmoothing problem without sacrificing noise re-

moval.

2.1.3. Denoising by partial reconstruction

Having established a method to determine the noise or-

der, we can filter the noise by partial IMF reconstruction.

To preserve the QRS complex, the window functions are

applied to the P IMFs considered to be noise components,

and the sum of these windowed IMFs and the remaining

IMFs forms the reconstructed signal:

x̂(t) =

P
∑

i=1

ψi(t)ci(t) +

N
∑

i=P+1

ci(t) + rN (t), (5)

where ψi(t) is the window function for the i-th IMF which

is constructed by concatenating the window functions (2),

each of which is centered at the QRS complex. Note that

the window function ψi(t) consists of variable size win-

dows that are calculated in Section 2.1.1, and the noise

index P is determined in Section 2.1.2.
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2.2. Baseline Wander Removal

As the BW spreads over the last several IMFs, it must be

separated from the signal components in those IMFs. Mo-

reover, the number of IMFs that contribute to the BW must

be established. This number is referred to as the baseline

wander order.

A BW estimate is first obtained via a “multiband” filte-

ring approach. The estimated BW is then subtracted from

the signal, yielding the reconstructed signal. A bank of

lowpass filters are applied to the last several IMFs. The

sum of the output of this filterbank serves as the BW esti-

mate.

Suppose the signal with BW is x(t). After performing

the EMD, we obtain all the IMFs

x(t) =
N+1
∑

i=1

ci(t), (6)

where the residue is included in the summation as the last

IMF cN+1(t). Denote the BW order as Q. We design a

bank of lowpass filters hi(t), i = 1, 2, . . . , Q and then

filter the IMFs starting from the last one cN+1(t) by these

lowpass filters. The outputs of these filters are

bi(t) = hi(t) ∗ cN−i+2(t), i = 1, 2, . . . , Q, (7)

where ∗ denotes the convolution. Set the cutoff frequency

of the first lowpass filter h1(t) to be ω0. The cutoff fre-

quency of the kth filter is set as

ωk =
ω0

Mk−1
, (8)

where M > 1 is a frequency-folding number.

The output bi(t) extracts the BW component in each

IMF. Therefore, it can be used to determine the BW order

Q. The variance of each bi(t) is determined as

var{bi(t)} =
1

L − 1

L−1
∑

t=0

[bi(t) − µbi
]2, (9)

where µbi
is the mean value of bi(t). Starting from the

last IMF, we choose Q such that var{bQ+1(t)} < ζ and

var{bQ(t)} ≥ ζ, where ζ is an appropriate established

threshold. The selection of the parameters ω0,M, ζ can

be based on a priori knowledge or can be experimentally

tuned according to the BW behavior.

Once the BW order Q is determined, the outputs of all

the filters are synthesized to form the estimate

b̂(t) =

Q
∑

i=1

bi(t). (10)

Finally, removing the BW yields the reconstructed signal

x̃(t) = x(t) − b̂(t). (11)

In the most general case, ECG signals are contaminated

by both high frequency noise and BW. As the noise only

affects the lower-order IMFs while the BW only affects the

higher-order IMFs, the methods do not interfere with each

other and can be combined. Consequently, the reconstruc-

ted signal after removing both high frequency noise and

BW is

x̂(t) =

P
∑

i=1

ψi(t)ci(t)+

N+1
∑

i=P+1

ci(t)−

Q
∑

j=1

hj(t)∗cN−j+2(t),

(12)

where the residue rN (t) in (5) is rewritten as cN+1(t).

3. Results

All the ECG signals used are from the MIT-BIH

Arrhythmia Database [5]. Every file in the database con-

sists of 2 lead recordings sampled at 360 Hz with 11

bits per sample of resolution. The quantitative evalua-

tion is assessed by the signal-to-error ratio (SER), SER =
∑L−1

n=0 x2 (t)/
∑L−1

n=0 [x (t) − x̂ (t)]
2
, where x(t) and x̂(t)

are the original and the enhanced signals, respectively.

3.1. Synthetic Noise and Baseline Wander

The first lead of record 103 is chosen because it captures

normal sinus rhythms and is reasonably free of noise. The

first 2000 samples are taken for the evaluation. Gaussian

noise is added to the original clean signal to yield a 10 dB

SNR. Then, we follow the procedure in Section 2. In the

statistical t-test, the significance level α is set to be 0.01.

Thus, the noise order P is determined to be 4 since at this

level p = 0.0019 < α. We also add synthetic BW. The

proposed method in Section 2.2 is then utilized to estimate

BW. The parameters ω0, M , and ζ are experimentally set

to be 0.8, 20, and 10, respectively. The noisy signal and the

final result of the recovery are shown in Fig. 2 with a SER

of 16.76 dB. As can be seen, the proposed method yields

good results in terms of visual quality.

Next, a quantitative study is carried out. Records

100,103,105,119, and 213 are arbitrarily chosen. The SNR

of each record is ranged from 6 to 18 dB. At each SNR,

100 Monte Carlo runs are performed to obtain an averaged

SER value. Results for Gaussian noise and BW are shown

in Fig. 3. The horizontal axis in the plot corresponds to the

input ECG SNR and the vertical axis shows the average

SER. The overall performance is quite good.

3.2. Real noise experiment

We consider the denoising and BW removal of an ECG

corrupted by severe real noise. The signal under test is

the first 8000 samples of record 232 from the MIT-BIH

Arrhythmia Database. The corruption added to the signal
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Figure 2. (a) Noisy ECG with BW; (b) enhanced signal

(solid) vs. original signal (dashed). SER=16.76 dB.
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Figure 3. SER (dB) vs. SNR (dB) in both Gaussian noise

and BW case.

is the ‘ma’ noise from the MIT-BIH Noise Stress Test Da-

tabase [5]. All parameters used in this experiment are the

same as those in Section 3.1. The signal is processed by

taking consecutive blocks of 2000 samples. The EMD–

based enhanced ECG is shown in Fig. 4 (b). The figure

shows that the significant noise components are nearly eli-

minated by the proposed method. Furthermore, the BW

exhibited in the noisy record is also corrected in the en-

hanced ECG. This result further demonstrates that the pro-

posed method is suitable for real noise cases.

4. Conclusions

A novel method for ECG enhancement based on the

EMD is presented. Both high frequency noise and base-

line wander removal are addressed. Enhancement is achie-

ved through the development of two EMD-based methods

to address each type of artifact. Results indicate that the

EMD is an effective enhancement tool.
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Figure 4. (a) ECG record 232 corrupted by real ‘ma’

noise; (b) Enhanced ECG.
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References

[1] Afonso VX, Tompkins WJ, Nguyen TQ, Michler K, Luo S.

Comparing stress ECG enhancement algorithms. IEEE Eng

Med Bio May-June 1996;15(3):37–44.

[2] Tikkanen PE. Nonlinear wavelet and wavelet packet de-

noising of electrocardiogram signal. Biological Cybernetics

April 1999;80(4):259–267.

[3] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q,

Yen NC, Tung CC, Liu HH. The empirical mode decompo-

sition and hilbert spectrum for nonlinear and nonstationary

time series analysis. Proc R Soc Lond 1998;454:903–995.

[4] Liang H, Lin QH, Chen JDZ. Application of the empirical

mode decomposition to the analysis of esophageal manome-

tric data in gastroesophageal reflux disease. IEEE T Bio Med

Eng October 2005;52(10):1692–1701.

[5] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Iva-

nov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley

HE. PhysioBank, PhysioToolkit, and PhysioNet: Compo-

nents of a new research resource for complex physiologic

signals. Circulation June 2000;101(23):215–220.

Address for correspondence:

Manuel Blanco–Velasco

Dept. of Teorı́a de la Señal y Comunicaciones
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