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Abstract 

Aim of this paper was to evaluate the performances of 

4 alignment algorithms for P-wave coherent averaging. 

The first algorithm is based on the maximum of the cross-

correlation function (CCF) between the current averaged 

wave and the incoming wave. The second algorithm 

computes the minimum square error (MSE) between each 

incoming wave and the current averaged wave. The third 

algorithm minimizes the difference between the areas of 

two rectangular window selected on the current averaged 

wave and the incoming wave (two-windows minimization, 

TWM).The fourth algorithm finds the local best alignment 

using the Dynamic Time Warping (DTW). The best 

alignment algorithm in terms of both shift error and 

template error resulted to be MSE, for SNR lower than 20 

dB. For higher SNR values, MSE, CCF and TWM 

algorithms showed similar performances. TWM suffers 

from the necessity to select the two rectangular windows.   

1.  Introduction 

When normal cardiac impulse travels through atrial 

myocardium, surface ECG recordings show the P-wave. 

If the atrial depolarization patterns are different from the 

normal, P-wave may appear prolonged and highly 

variable. Abnormal P-waves have been observed in 

patients prone to atrial fibrillation (AF) [1][2]. Many 

investigations have been focused on the analysis of P-

wave to detect patients prone to AF [1]. The analysis of 

the P-wave requires a pre-processing step. Acquired ECG 

signals are usually affected by noise, such as main 

interference or motion or respiratory artifacts, skin-

electrode interface that introduce undesired offsets, 

waveform fluctuations and baseline instability. To 

improve the signal-to-noise ratio, averaging algorithms 

are usually performed. The main issue in P-wave signal 

averaging is the correct alignment of the signals to sum. 

P-waves are usually extracted considering windows 

triggered on QRS complexes, that in a way act as 

reference points for the application of the stimuli to the 

system under observation. The response is a set of P-

waves that can be averaged to extract a template. This 

QRS-triggered method is valid in the circumstance that 

the response delay between the stimulus and the signal is 

constant. If random fluctuations in the stimulus-response 

time occur the resulting averaged waveform can be 

smoothed. For P-waves this latency fluctuation can be 

due to variations in PR interval or inaccuracy in R wave 

detection. This “trigger jitter” phenomenon will smooth 

the shape of the resulting P-wave template [5]. Several 

alignment methods have therefore been proposed in 

literature to refine and optimise the P-wave signal-

averaging algorithm [6-9]. The aim of this paper was to 

evaluate four alignment algorithms, on both simulated 

and real data. Simulated data were chosen in order to 

mimic monophasic, biphasic and triphasic waves, with 

random shift and added random noise. Real data were 100 

averaged P-waves, extracted from 10 subjects. Analysis 

has been performed for SNR equal to 10, 15, 20, 25 and 

30 dB and by averaging 100 and 200 waves. Three of 

these methods will be presented and compared in the next 

paragraphs, together with a fourth alignment algorithm 

(Dynamic Time Warping, DTW) never applied in P-

waves analysis so far. 

2.  Methods 

Cross-correlation function-based algorithm 

This algorithm is based on the maximum of the cross-

correlation function (CCF) between the current averaged 

wave and the incoming wave (coherent averaging) [5]: 

the waveforms to average are aligned according to the 

information obtained by a cross-correlation matching. A 

cross-correlation function φxy between the current 

averaged wave (i.e. the current template) x(n) and the 

incoming wave y(n) is computed:  
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where x(i)=0 for i<0 or i>N-1 and –N<m<N. If m is 

the lag at which the CCF shows its maximum, the 

incoming wave is shifted along the time axis for m 

samples. The two aligned waveforms are then summed up 

and the procedure is repeated for the following waves. 

Minimum square error-based algorithm 
This algorithm is based on the computation of the 

minimum square error (MSE) between each incoming 

wave and the corrent averaged wave. The sample at 
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which the MSE is minimum indicates the time of 

maximum agreement between waves, and the incoming 

wave is shifted accordingly. The method can be further 

improved by a quadratic polynomial interpolation applied 

to the sample corresponding to the minimal error and the 

neighbouring samples. This procedure leads to an 

accuracy one order of magnitude greater than the sample 

time [10]. 

Two windows minimizazion-based algorithm 

This alignment algorithm minimizes the difference 

between the areas of two rectangular windows, having 

different mean slopes and selected on the current 

averaged wave, and the incoming wave (two windows 

minimization, TWM). In this algorithm a two-step 

procedure is performed [11]. In the pre-running phase two 

rectangular windows having different mean slope are 

selected on the reference wave (i.e. the current template) 

by means of four cursors (figure 1). Height and width for 

both rectangular windows (Hr1,Wr1; Hr2,Wr2) and the 

difference between the areas of the two rectangles (∆Ar) 

are determined as parameters for the subsequent 

comparisons.  

Figure 1. Rectangular windows on the reference wave.  

In the running phase the same parameters are 

extracted from the incoming wave (H1,W1; H2,W2; ∆A), 

by shifting the fixed two window interval on the new 

signal. Two functions are determined: an enable binary 

function, which is equal to 0 if both the relative 

differences between the heights of corresponding 

rectangles on the template and the signal (i.e. (Hr1-

H1)/Hr1 and (Hr2-H2)/Hr2) are lower than a pre-

determined threshold and 1 otherwise; an alignment error 

function, given by the absolute difference between the 

two areas ∆Ar-∆A. The best alignment is thus found 

considering the signal shift that achieves the minimal 

error where the enable function is zero.  

Dynamic Time Warping 

This algorithm finds the local best alignment between 

samples of the current template (series X, N samples) 

wave and the incoming wave (series Y, M samples) 

[12,13]. All the algorithms previously mentioned do not 

count for possible local misalignments due to beat by beat 

phase changes in the electrical events that generate the P 

wave. All the samples of the incoming wave are thus 

shifted for the same quantity before performing the 

averaging with the current template. The DTW algorithm 

finds the local best alignment between samples of two 

different signals: each sample of the incoming wave (yi) 

can be shifted for a different quantity.  First a cost 

function is computed as a matrix estimating the distance 

between xi and yj  (i=1,...,N, j=1,...,M) Second, the 

warping function can be easily extracted, defining the 

succession of samples (i, j) to be averaged to obtain the 

new template. The warping function defines a path 

representing the best alignment (lowest cost) between X 

and Y.  

   Simulated data 

Simulated data were designed in order to mimic 

monophasic, biphasic and triphasic P-wave (figure 2), 

consisting of 400 samples (miming a sampling frequency 

of 2 KHz, the same used for real data acquisition). To 

reproduce the fluctuations of the PR interval as well as 

the inaccuracy in R wave detection, random shifts were 

simulated on each wave to be averaged. Random shifts 

were generated as random noises, ranging between –10 

and 10 samples. Finally, random noise was added to each 

wave, for SNR of 10, 15, 20, 25  and 30 dB. On simulated 

data, 3 algorithms (CCF, MSE and TWM) have been 

evaluated by estimating the mean absolute value of the 

difference between the actual and the estimated wave 

shifts (shift error); for all the four algorithms the power 

(variance) of the difference signal between the resulted 

averaged wave and the original sinthetic wave (template 

error) has been computed and compared. 

Figure 2. Simulated monophasic, biphasic and triphasic 

wave for a 10dB SNR (similar to that typically found in  

experimental data). 

Experimental data 

Experimental data consisted of 100 P-waves extracted 

from 10 subjects (sampling frequency 2048 Hz, 24 bit 

resolution). On these data, the algorithms' performances 

have been evaluated by estimating the power of the 

residual noise of the average P-wave estimated on the 

isoelectric TP track.  

3.  Results 

Table 1 shows the shift errors (estimated in samples as 

the mean of the absolute value of the difference between 
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the actual and the estimated wave shifts), for the 

monophasic, biphasic and triphasic simulated P-waves, 

for 100 (left) and to 200 (right) P-waves, at decreasing 

levels of added random noise are shown. 

Table. 1 Absolute average shift errors (in samples) for the 

monophasic, biphasic and triphasic simulated P-waves, 

for 100 (left) and 200 (right) averaged P-waves. Results 

obtained for different level of added random noise are 

shown.     

  Number of averaged 

waves=100 

Number of averaged 

waves=200 

 Monophasic simulated P-wave 

SNR CCF MSE TWM CCF MSE TWM 

10 0.67 0.46 0.45 0.60 0.58 0.55 

15 0.83 0.07 0.08 0.17 0.08 0.21 

20 0.00 0.00 0.03 0.00 0.00 0.01 

25 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 0.00 0.00 0.00 

 Biphasic simulated P-wave 

SNR CCF MSE TWM CCF MSE TWM 

10 0.53 0.39 2.27 0.43 0.68 2.66 

15 0.69 0.11 0.99 0.95 0.02 0.86 

20 0.00 0.00 0.51 0.00 0.00 0.46 

25 0.00 0.00 0.06 0.00 0.00 0.18 

30 0.00 0.00 0.00 0.00 0.00 0.02 

 Triphasic simulated P-wave 
SNR CCF MSE TWM CCF MSE TWM 

10 0.09 0.08 0.72 0.04 0.04 3.24 

15 0.00 0.00 0.00 0.00 0.00 0.02 

20 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 0.00 0.00 0.00 

 

Figure 3 shows the percentage template error 

estimated as the percentage error between the real 

waveform and the estimated template obtained averaging 

100 (left) and to 200 (right) monophasic, biphasic and 

triphasic simulated P-waves. Results obtained for 

different levels of added random noise are shown. Best 

alignment algorithm in terms of both shift error and 

template error resulted to be MSE for SNR lower than 20 

dB. For higher SNR values, MSE, CCF and TWM 

algorithms showed similar performances (shift error equal 

to zero and power of template error as low as –100 dB). 

Similar results have been obtained for real data: MSE and 

CCF guaranteed a residual noise always lower than 2µV. 

DTW gave results comparable to MSE and CCF for SNR 

higher than 15dB, but it turn out to be the most 

computationally complex.  

4.  Discussion and conclusions 

Since acquired ECG signals are usually affected with 

noise, the analysis of the P wave requires a pre-

processing step, based on averaging algorithms, to 

improve P-wave detection and signal-to-noise ratio 

(SNR). The main issue in P-wave signal averaging is the 

correct alignment of the signals to sum. P-waves are 

usually extracted from windows triggered on QRS 

complexes. Since random fluctuations of PR interval or 

inaccuracy in R wave detection can occur, alignment 

methods are needed to refine and optimise the P-wave 

signal-averaging algorithm. Indeed, percentage template 

error is higher without an alignment procedure than using 

any alignment algorithm. However, for monophasic wave 

template percentage error is always lower than 1%; for 

biphasic and triphasic waves, alignment resulted to 

reduce the template percentage error down to 4% and 5% 

respectively. In conclusion, best alignment algorithms 

resulted to be MSE and CCF in terms of shift errors, 

template errors and computational complexity. TWM 

suffers from the necessity to select the two rectangual 

windows for each P-wave to average. DTW compresses 

and extends the time axes of couples of signals to reduce 

the effects shape  differences caused by noise and normal 

shape variability. Indeed, the quantification of the 

amplitude differences that remain after DTW can be used 

as an index of waveform shape similarity [15]. In this 

study simulated signals were generated to mimic the jitter 

phenomenon caused by real PR interval fluctuations. 

Effect of shape changes in terms of extention or 

compression of theP-wave have not be addressed in this 

study.  
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 Fig. 3. Percentage template error estimated as the percentage error between the real waveform and the estimated 

template, for 100 (left) and to 200 (right) monophasic, biphasic and triphasic simulated P-waves. Results obtained for 

different levels of added random noise are shown. 
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