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Abstract

A method of time–varying parametric spectrum estima-

tion from ECG sequences is presented. Model parameters

are estimated recursively using a Kalman algorithm, which

extracts the time–varying parameters and state variables

of an ECG sequence, as well. We consider the noisy time–

sequence generated by nonlinear auto regression, when the

observations of the series contain measurement noise in

addition to the signal. The spectrum estimates for each

time instant then are obtained from the estimated model

parameters. Proposed Kalman filter model turns to be ad-

equate for either noise reduction or parameter estimation

of processed sequence. Results thus obtained show better

performance of Kalman–based filtration algorithm, in the

sense of SNR and WDD distortion measurements, in com-

parison to conventional stationary spectrum estimation.

1. Introduction

The extraction of high resolution ECG signals from

noisy measurements, is one of the greatest problems in bio-

medical signal processing and still remains open until the

present. Specifically, the problem that we considered is the

estimation of the spectral density of power of an ECG sig-

nal from the observation of the same one in a finite time

interval. The power spectral density estimation of phys-

iologic signals is performed predominantly using classi-

cal techniques based on the Fast Fourier transform (FFT).

However, these techniques have some limitations. They re-

quire stationarity of the segments studied and have limited

frequency resolution [1], [2]. Since ECG signals are non-

stationary en nature, these techniques are applied to short

overlapping segments which are assumed to be stationary.

It imposes a piecewise stationary model on the data and,

since local stationarity requires the analysis segments to

be short in duration, they have limited time–frequency res-

olution [3].

Initially the ECG nonstationary time series is treated

like a time–varying autoregressive process. Model pa-

rameters are estimated recursively using a Kalman algo-

rithm, namely, dual Kalman filter (DKF), which extracts

the time–varying parameters and state variables of an ECG

sequence, as well.

The adaptive Kalman filter algorithm we propose for in-

stantaneous PSD estimation assumes an underlying autore-

gressive structure of the data.

We choose an underlying AR(p) model structure be-

cause of its intrinsic generality and peak matching capa-

bilities. These are important properties for the analysis of

physiologic signals, since we are usually more interested

in estimating the frequency at which the formant frequen-

cies (peaks) occur than the valleys.

2. Methods

We propose two kinds of representation for a time–

varying series. First, an AR(p) model structure because

of its intrinsic generality and peak matching capabilities.

These are important properties for the analysis of physio-

logic signals, since we are usually more interested in es-

timating the frequency at which the formant frequencies

(peaks) occur than the valleys. Second, an ARMA(p, q)

process, whose structure is more complete than the AR

structure. It has the same properties of peak detection, but

it can smooth peaks that may be undesirable, like the ones

produced with the additive Gaussian noise.
The general state–space representation of an AR(p)

process is as follows
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= [1 0 · · · 0]x(k) + v(k) (2)
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The vector x(k) which must be estimated is usually re-

ferred to as a state vector. The current state of the system

is defined as the minimal amount of information such that

all future behavior of the system can be determined from

the future inputs to the system and the current system state.

The state is updated through the state transition matrix A,

composed of the parameters of the AR(p) polynomial.

For our interest, the output of the model, y(k) is a scalar,

and we refer to it as the observation at time k, obtained

from the state vector through the observation measurement

vector C.

The representation of an ARMA(p, q) process is similar

to the AR(p) one. We only have to change the observation

measurement vector to the following form

y(k) = Cx(k) + v(k)

= [1 b1 b2 · · · bq 0 · · · 0]x(k) + v(k) (3)

where the bi’s are the parameters of the MA(q) polyno-

mial.

An infinite variety of state–space representations can be

found for a linear AR(p) and ARMA(p, q) model by pro-

jecting x(k) on to an alternate basis (via a linear trans-

formation). This transformation will of course change the

form of the system matrices A, B, and C. The particular

form shown here is called the control canonical represen-

tation, as determined by the special structure of the A and

B matrices [2].

2.1. Dual Kalman filtering

To estimate the parameters and state of the TVAR

process we propose the state space model for an AR(p)
in Eq. (2), where x(k) is the system state and y(k) is an

scalar observation, in this case, the observation of the ECG

with additive Gaussian noise v(k).

In a dual estimation problem, the objective is to esti-

mate both the state and the parameters of the signal [4],

using the model in Eq. (2) and the following model for the

parameters dynamics:

a(k + 1) = a(k) + r(k) (4)

d(k) = a(k)x(k) + e(k) (5)

where a(k) is the parameter vector to be estimated, corre-

sponding to the AR(p) process parameters, and r(k) and

e(k) are interferences to the parameter transition and out-

put equations respectively. The output d(k) corresponds

to a linear observation on a(k). This approach is more

extensively explained in [5].

2.2. The unscented Kalman Filter

2.2.1. Unscented transformation

The unscented transformation (UT) is a method for cal-

culating the statistics of a random variable which under-

goes a nonlinear transformation [6]. Consider propagating

a random variable x (dimension L) through a nonlinear

function, y = f(x). Assume x has mean x̄ and covariance

Px. To calculate the statistics of y, we form a matrix X of

2L + 1 sigma vectors Xi according to the following:

X0 = x̄

Xi = x̄ +
(

√

(L + λ)Px

)

i
, i = 1, ..., L (6)

Xi = x̄ −
(

√

(L + λ)Px

)

i−L
, i = L + 1, ..., 2L

where λ = α2(L+k)−L is a scaling parameter. The con-

stant α determines the spread of the sigma points around x̄,

and is usually set to a small positive value (e.g., 1 ≤ α ≤
10−4). The constant k is a secondary scaling parameter,

which is usually set to 3 − L, and β is used to incorporate

prior knowledge of the distribution of x (for Gaussian dis-

tributions, β = 2 is optimal).
(

√

(L + λ)Px

)

i
is the ith

column of the matrix square root (e.g., lower–triangular

Cholesky factorization). These sigma vectors are propa-

gated through the nonlinear function

Yi = f(Xi), i = 0, ..., 2L (7)

and the mean and covariance for y are approximated using

a weighted sample mean and covariance of the posterior

sigma points,

ȳ ≈
2L
∑

i=0

W
(m)
i Yi (8)

Py ≈
2L
∑

i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)⊤ (9)

with weights Wi given by

W
(m)
0 =

λ

L + λ

W
(c)
0 =

λ

L + λ
+ 1 − α2 + β (10)

W
(m)
i = W

(c)
i =

1

2(L + λ)
, i = 1, ..., 2L

2.2.2. Implementation of the unscented Kalman

filter

The unscented Kalman filter (UKF) is a straightforward

extension of the UT to the recursive estimation in,

x̂k =(prediction of xk)+Kk[yk−(prediction of yk)] (11)
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where the state random variable is redefined as the con-

catenation of the original state and noise variables: xa
k =

[x⊤

k v⊤

k n⊤

k ]⊤. The UT sigma point selection scheme,

Eq. (7), is applied to this new augmented state RV to cal-

culate the corresponding sigma matrix, Xa
k [5].

2.3. Time–varying spectrum estimation

The time–varying spectrum estimate is obtained from

the momentary AR(p) parameter estimates âk
t as

Pt(f) =
σ̂2

e/fs

|1 +
∑p

k=1 âk
t e−j2πkf/fs |2

, (12)

where fs is the sampling frequency, âk
t is the AR(p) pa-

rameter estimate at time t and σ̂2
e is the variance of the

estimated observation error process. Note that Eq. (12)

is a continuous function of frequency and can, thus, be

evaluated at any desired frequencies up to the Nyquist fre-

quency fs/2. However, the frequency resolution is nat-

urally not infinite, but is determined by the underlying

parameter model, i.e., the model structure and model or-

der. When compared to classical FFT–based spectrum es-

timation methods, the resolution of parametric methods is

higher due to the implicit extrapolation of the autocorrela-

tion sequence.

The characteristics of the Kalman smoother spectrum

depend strongly on the order of the AR(p) model. As a rule

of thumb it can be said that a smaller model order results

in a smoother spectrum and a selection of too high–order

model can produce spurious peaks in the spectrum, but in

any case the order should be at least twice the number of

expected peaks in the spectrum.

2.4. The weighted diagnostic distortion

(WDD) measure

For every beat of the original signal and for the recon-

structed signal, a vector of diagnostic features is defined

[7]:
β⊤ = [β1 β2 · · · βp] ,

β̂⊤ =
[

β̂1 β̂2 · · · β̂p

]

,
(13)

where βp is the number of features in the vector, p = 15 is

used in this work. The diagnostic parameters (βi, i =
1, 2, . . . , p) were chosen to be: QRSdur, QRS+

amp,

QRS−

amp, area+
QRS , area−

QRS , areaT , STelevation,

STslope, PRint, Tamp, QTint, QTpint, Pamp, Pdur,

RRint. The WDD between these two vectors is

WDD(β, β̂) = ∆β⊤ ·
Λ

tr[Λ]
· ∆β × 100 (14)

where ∆β is the normalized difference vector

β⊤ = [∆β1 ∆β2 · · · ∆βp] (15)

and Λ is a diagonal matrix of weights, defined in Λ =
diag[λi], λi > 0, i = 1, 2, . . . , p. Every scalar in this

vector gives the distance between the original signal fea-

ture and the reconstructed signal feature. For the duration

features and the amplitude features, the distance is defined

as

∆βi =

∣

∣

∣
βi − β̂i

∣

∣

∣

max
{

|βi| ,
∣

∣

∣
β̂i

∣

∣

∣

} . (16)

3. Results

We tested the filtering performance of the unscented

Kalman filter in synthetic ECG signals [8], [9], with ad-

ditive white Gaussian noise and SNR = 3 dB, using the

MSE measurement and the WDD measurement. In the

same way we have tested the performance of the filter, us-

ing different orders of the AR(p) process. Namely, we have

used the following orders: p = (16, 22, 26, 30).
The results of these tests for MSE and WDD are sum-

marized in Figs. 1 and 2.

Figure 1. MSE of filtered signal with SNR = 3 dB.

Figure 2. WDD of filtered signal with SNR = 3 dB.
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(a)PSD of the signal estimated with DKF

(b)PSD of the clean signal

Figure 3. PSD of ECG signals.

4. Discussion and conclusions

According to the boxplots of the MSE, we can see that

it’s not very sensitive to the order of the AR(p) model,

because the improvement of the MSE is not significative

while the order of the AR(p) model increases. When the

SNR of the signal is low, an increment of the order makes

the error criterion to be bigger, in this way, higher orders

of the model doesn’t imply better performance of the algo-

rithm. This due to the overfitting caused because the order

of the model is higher than the order needed to model cor-

rectly the signal to be filtered.

On the other hand, the WDD measure reflects that the al-

gorithm induces a lot of distortion on the signal, and gives

no information about the dependence of the order of AR(p)

model, because when the model order increases there is not

tendency in the error criterion.

The PSD gives important information about what is go-

ing on, because unlike the spectrum of the original sig-

nal, that has the power distribution between 0 and 100 Hz,

while the spectrum of the estimated signal has its power

distributed along all frequencies.

We have used the Kalman filter to estimate both the sig-

nal and the parameters of the process that generates such

signal with average results. The filtered signal with the

MSE measure seems to be adequate, but the WDD mea-

sure demonstrates that the signal is too distorted. The PSD

also reflects that strange behavior because, as it was seen

in Fig. 3, the spectrum is distributed along all frequencies.

This behavior can be improved using a more determin-

istic kind of noise like colored noise or (50–60) Hz noise.

Anyway, the Kalman filter is very useful to model and

filter those ECG signals contaminated by white Gaussian

noise. With the Kalman Filter we could estimate both pa-

rameter and state of the clean signal without noise, and,

in this way, we could filter the contaminated signal. Since

Kalman filter is a time variant approach, we can use it to

filter non–stationary signals, like the ECG that are difficult

to filter with conventional stationary methods.

Even so the MSE is a good criterion to compute the level

of noise of any signal, for the ECG signals is better to use

an advanced method to measure the quality of the filter

that has been implemented. With the WDD measure, we

can to compare distortion between the original ECG sig-

nal without noise and the filtered signal. Because of the

WDD is based on diagnostic features, the WDD contains

direct diagnostic information and is more useful than other

methods.
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