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Abstract

We construct linear system-identification models of car-

diotocography (CTG) data collected during labour and

delivery. The models are the impulse response functions

(IRFs) of the input-output system relating the uterine pres-

sure (UP) stimulus to the fetal heart rate (FHR) response.

We compare models obtained with and without applying

noise suppression via the pseudo inverse technique. Fi-

nally, to determine the ability of the models to discriminate

healthy from hypoxic fetuses, we use the average models as

feature vectors of a support-vector-machine (SVM) classi-

fier.

Applying the pseudo-inverse resulted in cleaner models

with lower variance accounted for (VAF), likely indica-

tive of reduced overfitting. The area under curve of the

receiver-operator characteristic (ROC) without applying

pseudo-inverse was 0.695 ± 0.054. Similar results over

a useful operating range of false-positive rates were ob-

served with the pseudo-inverse applied.

1. Introduction

The difficulties of visual CTG interpretation have been

discussed in many previous clinical and technical studies:

the sensitivity is clinically useful but the low specificity

can increase cesarean section rates [1]. We would like to

use automated methods to model the maternal-fetal inter-

action available via CTG and eventually use these models

to improve the differential diagnosis of the fetus during

labour.

It is well known that the primary physiological mecha-

nisms for FHR decelerations are: 1) contraction-induced

umbilical-cord compression and 2) contraction-related de-

creases in oxygen delivery through an impaired utero-

placental unit. Furthermore there is a general consen-

sus that deceleration frequency and timing with respect to

contractions can be an indicator of the ability of the fe-

tus to withstand these types of insults. Hypothesis-driven

modeling from these facts would focus on contraction-

deceleration detection and gross estimates of timing be-

tween these events. This has been the approach in numer-

ous CTG studies [2–4].

However, it is also possible to directly model the input-

output interaction by system identification. We first ap-

plied this approach in a previous study [5] by calculating

the impulse response functions (IRFs) of the system relat-

ing the UP stimulus to the FHR response. The correlation

approach used in that study is known to be susceptible to

noise [6]. In this study, we attempt to reduce model noise

by applying the pseudo inverse technique. Finally, to de-

termine the ability of these models to discriminate healthy

from hypoxic fetuses, we use time-averaged models as fea-

ture vectors of an SVM classifier.

2. Methods

2.1. Data

As in [5] the database consisted of 161 intrapartum CTG

tracings (762 hrs) for pregnancies having a birth gesta-

tional age greater than 36 weeks and having no known ge-

netic malformations. The FHR was acquired at fS = 4Hz

while the UP was acquired at 1Hz and up-sampled to 4Hz.

The examples were labelled by outcome according to their

arterial umbilical-cord base deficit (BD) and neonatal in-

dications of severe neurological impairment. There was an

approximately equal distribution of normal cases (56 ‘D’:

BD < 8), intermediate cases (56 ‘C’: BD ≥ 8) and severely

compromised cases (49 ‘A’: BD ≥ 12, compromised neu-

rological function). The letter labels ‘A’, ‘C’, and ‘D’ are

our own internal labelling scheme.

2.2. Preprocessing

As described in [5], loss of sensor contact and mater-

nal heart-rate interference produce signal artifact that can
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degrade modelling. Using a Schmitt trigger to detect these

segments, we merge, bridge and exclude them as necessary

to obtain cleaner signals. The signals are then detrended

by a high-pass filter (cutoff frequency fHP = 1

220s
=

4.5 × 10−3Hz) in preparation for signal identification. Fi-

nally, the signals were decimated by a factor DS = 32 to

a sampling rate of fSD = 0.125Hz, since most UP-FHR

interaction occurs in the lower frequency spectrum.

2.3. System identification

This section will summarize the techniques [6–8] we use

to calculate the IRFs by least-squares and by pseudo in-

verse for noise suppression.

2.3.1. Linear least-squares

An output y corrupted by the zero-mean measurement-

noise signal v can be written as the linear convolution of

the input matrix U with the unknown IRF h:

z = y + v (1)

= Uh + v (2)

where for N samples and IRF lag M ,

z = [z1, z2, . . . zN ]T (3)

and U =











u1 0 . . . 0
u2 u1 . . . 0
...

...
. . .

...

uN uN−1 . . . uN−M−1











(4)

The least-squares estimate of h is then given by:

ĥ = (UTU)−1UTz (5)

≈ Φ−1

uu
φuz (6)

where, for N ≫ M , UTU and UTz are approximated by

the input autocorrelation matrix Φuu and the input-output

cross-correlation φuz , which are readily calculated.

2.3.2. Pseudo-inverse

To examine the noise characteristics of the the IRF esti-

mate, we look at the factors (UTU)−1 and UTz in eqn. 5

separately. The Hessian H = UTU is a positive definite

matrix and will therefore have the singular value decom-

position (SVD) and inverse

H = VSVT and H−1 = VS−1VT (7)

respectively. Furthermore, from eqn. 1,

UTz = UTUh + UTv

= VSζ + Vη (8)

where ζ = VTh and η = VT(UTv) are the projections

of the IRF h and the input-noise cross-correlation UTv

onto the Hessian eigenvectors V. Substituting eqns. 7 and

8 into eqn. 5,

ĥ = VS−1VT(VSζ + Vη)

= Vζ + VS−1η

=
M
∑

i=1

(ζi +
ηi

si

)vi (9)

Eqn. 9 shows that small eigenvalues si can amplify their

associated noise terms ni and corrupt the model term ζi

when projected onto the i-th eigenvector vi. The condition

number s1

sM

determines the relative impact of this noise.

Thus limiting the summation to the most significant eigen-

values should improve model SNR (signal-to-noise ratio).

We use the minimum description length (MDL) to

choose the number of retained terms. The MDL criteria

considers both model parsimony and fidelity:

MDL(m) =

[

1 +
m log(N)

N

] N
∑

i=1

[y(i) − ŷ(i,m)]
2

(10)

where m is the number of singular values retained. Since

y and the error e = y − ŷ are orthogonal in the least-

squares solution, the summation in eqn. 10 is the error

energy ξe = ξy − ξŷ . To efficiently calculate the MDL

for increasing m, we note that ξy = σ2

y and that ξŷ can be

written in terms of the SVD of the Hessian:

ξŷ =
1

N

N
∑

i=1

ŷ2(t)

= ĥT Φuuĥ

= ĥTVSVTĥ

=
M
∑

i=1

si

(

vT

i ĥ
)2

(11)

Therefore eqn. 10 can be rewritten as

MDL(m) =

[

1 +
m log(N)

N

]

[

σ2

y −

m
∑

i=1

si

(

vT

i ĥ
)2

]

(12)

2.4. Model processing

The calculation and processing of the IRF models are

described in detail in [5]. Briefly, the parameter N of the

calculation for IRF ĥ defines the length of the analysis

window. We chose N corresponding to TN = 20min, a

value as large as possible without incurring undue model

degradation due to artifact and non-stationarity. The IRF
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NPI-VAF Success PI-VAF Success

A 55.9 ± 17.1 92.0 40.1 ± 22.3 91.3

C 53.0 ± 16.1 95.5 35.1 ± 20.5 94.2

D 50.9 ± 15.8 96.7 32.4 ± 19.2 94.6

All 52.9 ± 16.4 95.1 35.3 ± 20.7 93.6

Table 1. System identification results without noise sup-

pression (NPI) and with the pseudo inverse applied (PI).

For each of the classes as well as the overall results, the

mean and standard deviation of the VAFs and the rate of

successful identification are shown.

parameter M corresponds to the length of the input history

(or lag) used to estimate the output. We chose a value of

M corresponding to TM = 8min based on model quality

as measured by variance accounted for (VAF) and discrim-

ination performance. Finally, to facilitate model compar-

ison across subjects, the model for each 20-min window

was normalized for scale invariance, decimated for model

reduction (to 15 coefficients) and then time averaged to ob-

tain an overall model for the entire CTG tracing.

2.5. SVM classification

Support-vector classification was chosen for classifica-

tion because it tends to achieve state-of-the-art classifica-

tion perfomance, even in high-dimensional input spaces,

and has built-in adjustment to avoiding overfitting. It is

based on polynomial-time exact optimization rather than

approximate methods (e.g. gradient descent). Non-linear

classification occurs because of an efficient kernel map-

ping of the input space to a higher-order space. In this

kernel space the best linear classifier is found which max-

imizes the distance from the boundary to the closest point.

Both the optimization step and the classification step are

very rapid because they involve only dot products (or sim-

ilar functions) of the example vector and the support vec-

tors, a small subset of the vector set found close to the class

boundaries.

With this feature vector and the outcome label H0 (nor-

mal Ds: the null hypothesis) or H1 (pathological As and

Cs) for each case, an SVM classifier with a radial-basis-

function kernel was trained and tested using k-fold cross-

validation (k = 8).

Multiple cross-validation simulations were done to al-

low calculation of the confidence bounds of the ROC

curve. The entire range of the ROC curve was sampled

by modifying the SVM cost function to favour either sen-

sitivity or specificity.

3. Results

Table 1 summarizes the results of the system identifi-

cation. We removed 20 min intervals where the identifi-

cation failed, which occurred for approximately 5-6% of

the 4073 analysis windows. These were generally caused

by artifacts that had not been filtered at the preprocessing

stage. The IRF estimates had mean and standard deviation

VAF values of 52.9 ± 16.4. Applying the pseudo-inverse

resulted in lower VAF (35.3 ± 20.7).

Typical modelling results for a class ‘A’ case over three

20-min windows with 10min overlap are shown in fig.

1 with and without pseudo inverse. The results without

pseudo inverse included significant noise; applying the

pseudo inverse resulted in cleaner models. The vertical

bars indicates the relative duration of the IRF lag. The in-

dicated VAFs without (85.0, 88.5, 86.3) and with (80.8,

83.6 and 82.8) pseudo inverse are calculated only after the

lag to avoid filtering end effects.

Fig. 2 shows the MDL curves and minima for the win-

dows of above case. The number of retained terms of the

pseudo inverse in each window was m = 14, 12 and 13

respectively. Without noise reduction, the order was ef-

fectively m = 60 (the far right of the MDL curve, or the

number of IRF samples before model decimation).

The ROC area under curve of the SVM classifier with

and without applying pseudo-inverse was 0.680 ± 0.075

and 0.695 ± 0.054, respectively. However, over a useful

operating range of false-positive rates (15-45%), the two

models had similar sensitivities (see fig. 3).

4. Discussion and conclusions

The low VAF values in general are not unexpected since

UP is not the sole influence on FHR. The reduction in VAF

using pseudo inverse is likely indicative of reduced over-

fitting: that information was also preserved by this noise

suppression is confirmed by the similar discrimination of

both models. This similarity can also be explained by the

fact that the final model decimation results in IRFs with

similar low-pass energy.

While time averaging also improves the model signal-

to-noise ratio, the cleaner pseudo-inverse models may be

preferable short-term estimates. In future work, using the

pseudo-inverse models to create features with higher time

resolution will provide improved dynamic information and

should lead to better discrimination.
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Figure 1. Typical system identification results for an ‘A’

case without (a) and with (b) pseudo inverse. The columns

are successive 20-min windows while the rows are (from

top to bottom) the input, output (true in grey, estimate in

black) , error, undecimated IRF and decimated IRF (cur-

rent window in black, time average in grey), respectively.

Only the IRFs are shown in (b).
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Figure 2. MDL curves and minima for windows of fig. 1.
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