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Abstract 

The aim of this work is to predict the spontaneous 

termination of atrial fibrillation (AF) episodes. The 

database includes three record groups: non-terminating 

AF (N), AF that terminates one minute after recording 

end (S), and AF that terminates immediately after 

recording end (T). A first goal consisted on separating N 

from T group records (event 1), and a second, for 

separating S from T records (event 2). A Support Vector 

Machine was used for the classification problem. For 

event 1, four indexes were extracted: the atrial 

fibrillatory frequency (AFF) and the mean, standard 

deviation, and approximate entropy of RR intervals. For 

event 2, the AFF, the energy of the 3-7 Hz and 7-11 Hz 

bands, from the ten and five final seconds of the records, 

were used. The groups were divided in two sets: learning 

and test. For event 1, a 100% in learning, and 86.66% in 

test set were correctly classified. For the event 2, we 

classified 100% in the learning, and 80% in the test set. 

 

1. Introduction 

Atrial Fibrillation (AF) is the most common cardiac 

arrhythmia, affecting 1% of the population [1]. AF is 

characterized by predominantly uncoordinated atrial 

activation with consequent deterioration of atrial 

mechanical function. On the electrocardiogram (ECG), it 

is indicated by irregular fibrillatory waves, giving rise to 

a loss in the normal P wave, which represents the atrial 

activity.  

When atrial fibrillation appears in its paroxysmal (self-

terminated) form (PAF), it may recur with a variable 

frequency over many times. In many patients the 

arrhythmia may undergo transition to the persistent 

(chronic, non-self-terminated) form (CAF). The transition 

rate varies depending on the etiology. The duration of the 

paroxysmal events also influences over the transition rate 

[2].  

Changes in action potential duration and atrial 

refractory periods, are indicators of atrial electrical 

remodeling after an atrial fibrillatory event. This atrial 

remodeling may play an important role in the self-

perpetuation of AF [3, 4].  

CAF requires pharmacological treatment or electric 

shock delivery, in order to be finished. Sustained AF has 

been associated as a factor that increases the risk of stroke 

and thrombus genesis [5, 6].  

A better understanding about the mechanisms of self-

termination of atrial fibrillation and its perpetuation, may 

contribute to choose an adequate therapy, leading to 

decrease risks in patients and costs of AF treatment.  

Differences between PAF and CAF on superficial 

electrocardiogram are not evident, therefore, predicting 

the end of spontaneous atrial fibrillation using ECG 

represents a challenge. In 2004, Physionet and Computers 

in Cardiology asked if it is possible to predict if (or when) 

an episode of AF will end spontaneously [7]. 

The aim of this work was trying to predict the 

spontaneous termination of AF episodes, as it was raised 

in the Physionet/Computers in Cardiology Challenge 

2004. 

2. Methods 

2.1. Database 

The database included three record groups of 

electrocardiograms from the 2004 PhysioNet/Computers 

in Cardiology Challenge database [8]:  

Group N: Non-terminating AF, at least an hour 

following at the end of the recording, 

Group S: AF that terminates one minute after 

recording end, and 

Group T: AF that terminates immediately (within one 

second) after recording end. 

The database is composed of 80 one minute surface 

ECG records. That data was extracted by a two-channel 

Holter ECG with sampling rate of 128 Hz and 16 bits 

resolution. DII and V1 patient leads were recorded. 

The database was divided into a learning set and two 

test sets (test set A and test set B). The learning set 

contains 30 records in all, with 10 records in each of three 

groups. Test set A contains 30 records of which about 

half are from Group N and the remainders are from Group 
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T. Test set B contains 20 records, 10 from Group S and 

10 from Group T. 

2.2.  ECG signal processing 

Two goals were raised. The first of them consisted on 

separating records of group N from group T (event 1), 

and the second of them, was carried out for separating 

records of group T from group S (event 2). All signal 

processing was done in Matlab (The MathWorks, Inc., 

Natick, MA, USA). 

Event 1: We applied an approach for computing four 

characteristic indexes from the ECG signal on this event: 

the atrial fibrillatory frequency (AFF), and from the RR 

intervals time series, the RR mean value (RRmean), 

standard deviation (RRsd) and approximate entropy 

(ApEn). 

The dominant atrial fibrillatory frequency, estimated 

using power spectral analysis on the atrial fibrillatory 

activity in the ECG, reflects the average rate of AF [9, 

10]. This index is useful for non-invasive assessment of 

electrical remodeling in AF [11]. Several investigations 

have shown that longer paroxysmal AF episodes have 

higher frequencies than shorter ones, and patients with 

low AFF are more probably to be cardioverted using 

antiarrhythmic drugs [9, 12, 13]. 

Frequency analysis was carried out through three 

steps: band-pass filtering, ventricular activity cancellation 

(QRST complexes), and fast Fourier transformation 

(FFT). Band-pass filtering of the data was performed 

using a 0.5-50 Hz, high order, zero-phase filter. This was 

chosen to reduce both respiration induced fluctuation of 

the baseline and electrical noise. The original signal was 

up-sampled to a 1024 samples per second in order to have 

more signal definition. QRST complexes were subtracted 

using a template matching and signal averaging. QRST 

segments were classified according to their morphology, 

and then averaged. A template was created with the 

QRST segments averaged, and the transitions between 

successive QRST complexes in the reference signal were 

the means of corresponding intervals of the original 

signal. The template was subtracted from the original 

signal to produce a residual atrial fibrillatory signal [9, 

10, 14].  

Residual atrial fibrillatory signal was down-sampled to 

256 Hz. The power spectrum of the residual signal was 

calculated by 4096 points windowed FFT, 1024 points 

Gaussian window and 853 points overlap. An average 

was made over the 60 seconds of the power spectrum of 

the residual signal. Peak frequency was determined in the 

3-12 Hz range, and the AFF was estimated as the 

component with maximum amplitude. This last step was 

only made over the signal of lead V1. Lead V1 was 

chosen because it had the largest amplitude of fibrillatory 

activity according to the results of previous studies [9, 

10]. 

Figure 1, illustrates the different steps described for 

getting the residual atrial fibrillation activity for 10 

seconds. The template (green signal in the middle), is 

subtracted from the filtrated original signal (the blue one 

on top) to produce a signal with ventricular activity 

suppressed (the red signal on bottom). 

 

 
Time in seconds 

Figure 1. Ten seconds from signal filtered (blue), 

template (green), and atrial fibrillation residual signal 

(red). 

 

 

Figure 2. Power spectral density of the 60 sec. of the 

atrial fibrillatory activity signal. Peak represents the atrial 

fibrillatory frequency. 

 

In Figure 2, we can observe the power spectrum 

average of the 60 seconds of the residual signal. 

The mean and standard deviation of the interbeat 

period series were computed for the entire ECG signal. 

The approximate entropy of the RR intervals was also 

calculated. 

Approximate entropy corresponds to a measurement of 

complexity and disorder of a data series or a signal. This 

was calculated using the Pyncus method [15]. Two 

parameters must be specified before ApEn can be 

computed: m, the embedding dimension of the vectors to 

be formed, and r, a threshold that is, in effect, a noise 

filter. As suggested by Pincus, we used m=2 and 

r=0.25SDx, where SDx is the standard deviation of the 

original data.  

Event 2: On this approach, our hypothesis was that the 

10 and 5 final seconds of the recording, could show 
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significant differences for the AFF and the percentages of 

energy of the 3-7 Hz and 7-11 Hz bands of the residual 

atrial fibrillatory signal, between the group which AF 

terminates immediately (group T), and the group that AF 

terminates one minute after recording end (group S). 

FFA was computed like in event 1, but the power 

spectrum was only calculated over the 10 final seconds of 

the residual atrial fibrillatory signal. 

The percentages of energy of the 3-7 Hz and 7-11 Hz 

bands were calculated using wenergy function of Matlab, 

which computes the percentage of energy corresponding 

to the approximation and details of a wavelet 

decomposition. A Symlet, fourth order wavelet filter was 

used for the wavelet decomposition. The energy 

percentages were computed over the ten and five final 

seconds of the residual atrial fibrillatory signal for each 

record in this event. 

2.3. Statistical analysis 

All continuous variables are presented as mean ± 1 

standard deviation (SD). These indexes were compared 

between groups for each event. Nonparametric Wilcoxon 

unpaired test is applied to analyze differences between the 

record groups.  

2.4. Records classification 

A two order, polynomial function, support vector 

machine (SVM) was employed for the classification 

problem. For each event, a SVM was only trained using 

the indexes computed from learning sets of the 

corresponding event.  

The parameters of the test sets were used for 

evaluating the performance of each SVM trained. 

The SVMs were implemented using libraries designed 

by the Taiwan University [16]. A Kernel of polynomial 

function was employed for the SVM implementation, 

using the equation 1: 

( )d
rVV +⋅⋅ 'ϕ     (1) 

where V represents the vector of variables, d sets 

degree of the kernel function, and ϕ and r are coefficients 

for setting the SVM. We adjusted d=2, ϕ=2 and r=1 in the 

SVMs built.  

3. Results 

3.1.  Event 1: 

Statistical analysis revealed significant differences 

between group N and group T for the parameters FFA 

and ApEn of RR intervals. There were not significant 

differences in the RRmean and RRsd between these 

groups.  

Tables 1 and 2, show the statistical analysis results, 

obtained on learning and test sets, for each computed 

parameter for the record groups in this event. 

 

Parameter  
Group N 

mean±SD 

Group T 

mean±SD 
P-value 

AFF (Hz) 6,58±0,62 5,11±0,35 NS 

RRmean (sec) 0,80±0,17 0,64±0,21 0,112 

RRsd (sec) 0,17±0,06 0,16±0,07 0,41 

ApEn 0,56±0,10 0,65±0,13 0,048 

Table 1. Statistical analysis of the computed parameters 

in learning set. NS- non significant 

 

Parameter 
Group N 

mean±SD 

Group T 

mean±SD 
P-value 

AFF (Hz) 6,57±0,78 5,21±1,16 0,001 

RRmean (sec) 0,71±0,12 0,65±0,18 0,294 

RRsd (sec) 0,15±0,06 0,14±0,06 0,589 

ApEn 0,54±0,11 0,67±0,18 0,025 

Table 2. Statistical analysis of the computed parameters 

in test set 

 

We used different combinations of the parameters for 

training the SVM, getting different performances in each 

case. Table 3 resumes the gotten results for the 

classification. 

 

Parameter 

employed 

Exactitude 

learning set 

Exactitude 

testing set 

Total 

exactitude 

AFF 
95% 

(19/20) 

80% 

(24/30) 

86% 

(43/50) 

AFF and 

ApEn 

100% 

(20/20) 

80% 

(24/30) 

88% 

(44/50) 

AFF, ApEn, 

RRmean, and 

RRsd 

100% 

(20/20) 

86,66% 

(26/30) 

92% 

(46/50) 

Table 3. Classification exactitude in learning and test sets, 

for different combinations of the parameters used for 

training the SVM 

 

3.2.  Event 2: 

Statistical analysis did not reveal significant 

differences in none of the calculated parameters between 

the groups S and T, in both learning and test sets.  

Nevertheless, we could get a total exactitude of 90% in 

the classification of the groups on this event. This best 

score was obtained by training the SVM with the 

following parameters: AFF computed from the 10 final 

seconds of the recording, the percentages of energy of the 
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3-7 Hz and 7-11 Hz bands from the 10 final seconds, and 

the percentage of energy of the 7-11 Hz band of the 5 last 

seconds. 

The SVM correctly classified 20/20 records (100%) in 

learning set, and 16/20 records (80%) in test set. 

4. Discussion and conclusions 

More organized atrial fibrillation, showing single 

wavefronts propagating through atrial myocardium, has a 

longer atrial fibrillatory cycle average than less organized 

AF with multiple wavefronts and areas of conduction 

block [17]. Then, the average of atrial fibrillatory cycle 

length (inverse of atrial fibrillatory frequency) is an index 

of atrial refractoriness and atrial fibrillation organization. 

On the other hand, longer AF episodes reverting 

spontaneously, have a higher fibrillation frequency value 

than shorter episodes [9, 18]. Thus, higher AFF suggests 

more disorganized atrial fibrillation, and it has less 

probability of finishing spontaneously in short time. 

Approximate Entropy can be used by predicting the 

end of atrial fibrillation episodes. In this study we could 

find that the RR intervals show a higher disorder when 

AF is near to its end than when it is far of it. 

It is possible to predict the spontaneous termination of 

atrial fibrillation by employing artificial intelligent 

techniques, like support vector machine, but evidently, it 

must use parameters for training, which are able to 

characterize the system that is wanted to predict, in order 

to get the best performance. 

Acknowledgements 

This work was partially supported by Francisco de 

Miranda University and Simón Bolívar University, 

Venezuela. 

References 

[1] Waktare J. Atrial Fibrillation. Circulation 2002. 106:14-16. 

[2] Nunain S, Debbas N, Camm A. Determinants of the Course 

and Prognosis of Atrial Fibrillation, pp: (28) 350-358, in: 

Touboul P, Waldo AL (eds). Atrial Arrhythmias: Current 

Concepts and Management. Mosby Year Book Inc, 1990; 1 

[3] Daoud E, Bogun F, Goyal R, Harvey M. et al. Effect of 

Atrial Fibrillation on Atrial Refractoriness in Humans. 

Circulation. 1996. 94:1600-1606 

[4] Wijffels M, Kirchhof Ch, Dorland R, Allessie M. Atrial 

Fibrillation Begets Atrial Fibrillation: A Study in Awake 

Chronically Instrumented Goats. Circulation. 1995. 

92:1954-1968  

[5] Wolf P, Abbott R, Kannel W. Atrial fibrillation: a major 

contributor to stroke in the elderly. The Framingham Study 

Arch Intern Med., 1987. 147:1561–1564. 

[6] Halperin JL, Hart RG. Atrial fibrillation and stroke: new 

ideas, persisting dilemmas. Stroke 1988;19:937– 41. 

[7] Moody G. Spontaneous Termination of Atrial Fibrillation: 

A Challenge from PhysioNet and Computers in Cardiology 

2004. Computers in Cardiology, 2004: 101-104. 

[8] Goldberger AL, Amaral LAN, Glass L, Hausdorff 

JM,Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng 

CK,Stanley HE. PhysioBank, PhysioToolkit, and 

PhysioNet: Components of a New Research Resource for 

Complex Physiologic Signals. Circulation 2000: 

101(23):e215-e220 

[9] Bollmann A, Kanuru N, McTeague K, Walter P, DeLurgio 

D, Langberg J. Frequency Analysis of Human Atrial 

Fibrillation Using the Surface Electrocardiogram and Its 

Response to Ibutilide. Am. J. Cardiol. 1998. 81:1439–1445 

[10] Holm M, Pehrson S, Ingemansson M, Sornmo L, 

Johansson R, Sandhall L, Sunemark M, Smideberg B, 

Olsson C, Olsson S. Non-invasive assessment of the atrial 

cycle length during atrial fibrillation in man: introducing, 

validating and illustrating a new ECG method. Cardiovasc. 

Res. 1998. 38:69-81 

[11] Husser D, Stridh M, Sornmo L, Olsson B, Bollmann A. 

Frequency Analysis of Atrial Fibrillation From the Surface 

Electrocardiogram. Indian Pacing and Electrophysiology 

Journal 2004. 4(3):122-136 

[12] Fujiki A, Nagasawa H, Sakabe M, Sakurai K, Nishida K, 

Mizumaki K, Inoue H. Spectral characteristics of human 

atrial fibrillation waves of the right atrial free wall with 

respect to the duration of atrial fibrillation and effect of 

class I antiarrhythmic drugs. Jpn Circ J. 2001. 65:1047-51 

[13] Biffi M, Boriani G, Bronzetti G, Capucci A, Branzi A, 

Magnani B. Electrophysiological effects of flecainide and 

propafenone on atrial fibrillation cycle and relation with 

arrhythmia termination. Heart 1999. 82:176–182 

[14] Bollmann A, Mende M, Neugebauer A, Pfeiffer D. Atrial 

Fibrillatory Frequency Predicts Atrial Defibrillation 

Threshold And Early Arrhythmia Recurrence In Patients 

Undergoing Internal Cardioversion Of Persistent Atrial 

Fibrillation. Journal Of Pacing And Clinical 

Electrophysiology 2002. Vol. 25, No. 8:1179-1184 

[15] Akay M. Nonlinear Biomedical Signal Processing, 

Dynamic Analysis and Modelyng. IEEE Press Series on 

Biomedical Engineering 2000. Vol. 2. 

[16] Chih-Chung Ch, Chih-Jen L. LIBSVM: a library for 

support vector machines. 2001. Software vailable: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm 

[17] Konings K, Kirchhof C, Smeets J, Wellens H, Penn O, 

Allessie M. High-density mapping of electrically induced 

atrial fibrillation in humans. Circulation 1994 89:1665-80 

[18] Bollmann A, Sonne K, Esperer H, Toepffer I, Langberg J, 

Klein H. Non-invasive assessment of fibrillatory activity in 

patients with paroxysmal and persistent atrial fibrillation 

using the Holter ECG. Cardiovasc Res. 1999. 44:60-6 

 

 

Address for correspondence 

 

José D. Díaz R. 

Grupo de Bioingeniería y Biofísica Aplicada. 

Universidad Simón Bolívar. 

Valle de Sartenejas, 89000. 

Caracas, Venezuela 

E-mail: 03-83260@usb.ve 

952


