
 

 Abstract—Pathological manifestations of epilepsy are 
generally associated with a set of clinical events that 
possess both spatial and temporal patterns. In this 
paper, based on a similar hypothesis, we study the 
evolution of epileptic seizures by analyzing temporal 
changes in the spatial bindings between various cortical 
structures. We propose to apply the Mantel statistics to 
quantitatively analyze the temporal changes in spatial-
correlation matrices. The Mantel test is applied to 6 
complex partial seizures of an epileptic patient. We show 
that, in 5 of the 6 instances, the spatial structures 
undergo significant connectivity changes in the 2 hours 
time-interval prior to the occurrence of a seizure.  
 

I. INTRODUCTION 
 

It is widely suggested that certain clinical 
manifestations of epilepsy are directly reflected in the 
changes associated with temporal dynamics of the brain. 
Much of the previous studies [1-8] have focused on 
analyzing the temporal changes associated with brain’s non-
linear dynamics. Feature descriptors such as system’s 
complexity or the short-term Lyapunov exponents [2-6] are 
analyzed and studied individually on each of the system’s 
dimensions. Temporal dynamical changes associated with 
such features, however, fail to explain state associated 
changes of an epileptic brain in its overall spatial 
configuration. Rather than studying the temporal dynamics 
along each dimension individually, the emphasis should be 
on considering all the dimensions in unison in a multi-
variate perspective. In other words, in spatially extended 
systems, dynamics change both in time and in space and 
therefore, approaches that track the temporal changes of the 
spatial networks can be more effective and helpful in efforts 
aimed at characterizing clinical events, such as epileptic 
seizures. 
 Inspired by the similarity–index technique (SI) 
introduced by Arnhold et al. [9], we have recently proposed 
a SOM based computationally efficient measure, the SOM-
SI [10-12], to quantify mutual interactions among various 
nodes in a spatially coupled multi-dimensional system. The 
affinity matrix representation formed from the 
interdependency measurements provides information on the 
interactions among all the possible pairs of nodes in a graph. 
For an epileptic brain, in particular, changes associated with 
the epileptic activity will therefore be reflected by temporal 
changes in the overall spatial connectivities. In this study, 
we discuss a statistical approach to quantitatively track those 
temporal changes in the overall spatial-patterns of an 
epileptic intracranial EEG. In particular, we propose to 
evaluate the similarities in spatial connectivity’s using 
Mantel statistics, a well known statistical approach designed 
specifically to quantify similarities between affinity 

matrices. The paper is organized as follows: We first present 
a brief review of Mantel test procedure in section II. Section 
III discusses the application of the Mantel statistics to 
epileptic intracranial EEG and the corresponding results. In 
section IV we discuss about potential directions for future 
study. 
 

II. MANTEL TEST FOR MATRIX COMPARISON 
 

The Mantel test was first developed in 1967 to correlate 
temporal and spatial distributions of cancer incidences [13] 
and since then it has been widely used as a correlation tool 
in various biological [14] and ecological disciplines [15-17]. 
It is a linear correlation estimate of the relationship between 
two square distance matrices based on the degree of 
relationship of two sets of variables taken at the same 
sampling locations. In short, the Mantel test is essentially a 
statistical framework to test the consensus of two 
distance/proximity/affinity matrices.  

In the Mantel test, the hypothesis is that the distances 
(or similarities) in matrix A are independent of the 
distances, for the same set of objects, in another matrix B. In 
other words, we test the hypothesis that the two matrices 
under study are no more similar than they would be by 
chance assignment of the labels to the rows and 
corresponding columns. The normal procedure to test the 
hypothesis would be to compute a measure of resemblance 
between the values in the two upper (or lower) triangular 
parts of the square symmetric matrices under comparison 
and test against a random distribution. The random 
distribution is constructed by repeatedly permuting at 
random, the rows and corresponding columns of one of the 
matrices, and re-computing the statistic. Finally, the original 
value of the statistic is compared with the distribution 
obtained by randomly reallocating the order of the elements 
in one of the matrices. 

The statistic used for the measure of correlation 
between the matrices is the classical Pearson correlation 
coefficient: 
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where N is the number of elements in the lower or upper 

triangular part of the matrix, A is the mean for A elements 
and sA is the standard deviation of A elements. If the two 
matrices are normalized, i.e. 
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we have ,1  ,0  ,1  ,0 ==== BA sbsa  and therefore 
(1) can be re-written as 
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Note that the coefficient r measures the linear correlation; 
therefore if any non-linear relationships exist, they will be 
lost. The testing procedure using the Mantel test statistic can 
be summarized as follows: 

Assume two square symmetric matrices A and B of size 
N x N. The rows and columns in both the matrices 
correspond to the same objects. The first step is to compute 
the Pearson correlation coefficient between the 
corresponding elements of the lower (or upper) triangular 
matrices. 
1. Compute the original (or the non-permuted) statistic rAB 

using (2) 
2. Permute randomly the rows and the corresponding 

columns of one of the matrices (say B) to create a new 
matrix B’. 

3. Recompute (1) using A and B’ to obtain permuted statistic  

'AB
r . 

4. Repeat the steps (2) and (3) several times (> 500) to form 
a distribution of the permuted statistics. This distribution 
will be the reference distribution under the null 
hypothesis. 

5. Assuming normal approximation on the reference 
distribution, compute the z-score by comparing the non-
permuted statistic in step (1) with the mean and variance 
of the reference distribution. i.e,  
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III. APPLICATION TO EPILEPTIC INTRACRANIAL EEG 

 
 In the current study, we propose to use the Mantel-test 

statistic to compare SOM-SI affinity matrices, evaluated at 
different time periods. Particularly, the emphasis will be on 
tracking the temporal changes of the spatial connections, in 
the intervals prior to seizure. The experimental design 
procedure is explained in the following steps. 
1. Select 2 hours of intracranial EEG segments prior to a 

seizure. 
2. Quantify pair-wise spatial dependencies among the 

channels (in this case 24) using the SOM-Similarity Index 
measure. The SOM-SI affinity matrices are obtained from 
10 second windows, for 2 hours pre-seizure (only the 
alternate 10 seconds are evaluated; therefore we get a total 
of 180 SOM-SI affinity matrices from 2 hours data). In 
our study, the 24 channels were sampled from orbito-
frontal, temporal depth and the sub-temporal depth 
regions of an epileptic brain. 

3. Fluctuations between successive matrices are smoothened 
by temporal averaging. A window size of 3 (equal to 1 
minute) was used. 

4. Affinity matrix corresponding to the window 2 hours prior 
to seizure is individually compared with the affinity 
matrices at all other times leading to a seizure. For 

comparison, every 3rd minute was used to ensure that the 
effects of correlation between matrices due to temporal 
averaging were eliminated. Note that the null-hypothesis 
distribution was formed from 700 randomly permuted 
statistics. 

5. Hypothesis testing is done by checking the z-scores at the 
95% significance level.  

The Mantel test statistic was applied to six complex 
partial seizures of a patient, suffering from medial temporal 
lobe epilepsy. Fig. 1 illustrates the temporal changes in the 
spatial-activity of the channels, in the interval 2 hours prior 
to seizure. z� scores greater than zcrit,0.95 = 1.96 indicates that 
the null hypothesis H0 is rejected at the 95% significance 
level. Rejecting H0 implies that the similarity statistic 
between the test-affinity matrix at time‘t’ and the reference 
affinity matrix (corresponding to 2 hours before seizure) is 
significantly different than the one obtained by randomly 
permuting the rows and columns of the test-affinity matrix. 
In Fig.1 the z� scores in all seizures are almost always 
greater than zcrit. However, in a few instances, the z�‘s 
exhibit a tendency to decrease gradually as the seizures 
approach. In a few other seizures, z�’s seem to have a 
negative bump that lasts for several minutes.  

Reduced z�’s do not necessarily imply that the 
correlation estimates are small. However, verification of the 
original similarity statistic r indicated a reduced correlation 
estimate at those points corresponding to reduced z�’s. This 
observation directly suggests that the spatial relationships in 
the intracranial EEG data at those points are indeed very 
different (less correlated) from the spatial relationships 
observed around 2 hours prior to seizures.  

As stated earlier, even though the z�’s show a 
remarkable decrease they are still greater than the zcrit. Also, 
notice that the absolute values of z�’s vary across seizures. 
These non-uniformities will render any comments regarding 
spatio-temporal changes prior to seizures, purely qualitative. 
It is therefore absolutely necessary to quantify the temporal 
decrease observed in correlation estimates. We propose a 
simple approach to statistically verify the decrease in the 
mantel statistics, z�’s.  

The approach consists of checking whether the 
decreases observed in the Mantel test results (fig. 1) are 
statistically significant or not. Let zref be the reference z� 

score at a time instance close to 2 hours before seizure. 

If αα ,,_ reftdifft zzz −= , the null hypothesis H0 can be 

stated as follows: 
Null Hypothesis H0: There is no difference in the z-scores, 

αα ,,  and reft zz . 

The alternate hypothesis H1: The z-scores αα ,,  and reft zz  

are not equal. 
Testing the hypothesis consists of the following steps: 
1. Construct a distribution of z�’s from samples taken during 

inter-ictal states. Specifically, take any 2 hour segment 
from the background activity of the intracranial EEG data. 



 

Construct affinity matrices as before and evaluate Mantel 
statistics to get z-scores. Repeat the above procedure on a 
number of such 2 hour segments (say 40) from 
background recording of the same patient and evaluate 
mantel test procedure for each one of them, to form an 

ensemble of z-scores, i
stz , where t represents the time-

index (hours), s represents the segment index (s = 1, 2, 
3….., 40) and i is used to denote that these z-scores are 
computed on inter-ictal segments. For illustration, fig. 2 

shows the smoothened izα  profiles corresponding to the 

inter-ictal segments. The smoothened αz  profile 
corresponding to seizure 1 is also shown superimposed on 

the izα  profiles. 
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Figure 1. Quantifying the spatial changes along time using 
Mantel statistics. The vertical lines in the figure indicate 
seizure onset and termination periods. Notice that the 
statistical values show a slight decrease, approaching the 
seizures. 
 

2. If i
st

i
sref

i
sdifft zzz ,,,_ −=  is the difference in the z-scores 

at time t relative to a reference time for the sth segment, 

then i
difftz _  forms a distribution that is constructed from 

all the 40 segments and is observed to be approximately 
Gaussian.  

3. The idea is to check if the difference observed in the z-
scores in the segment 2 hours before seizure (zt_diff) is 
significantly different from the differences observed in the 

z-scores during inter-ictal states ( i
difftz _ ). We quantify 

this idea as follows: 
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where i
difftz _  and )( _

i
difftzσ are the mean and variances 

of i
difftz _ , respectively. Zt > 1.96 indicates the difference 

is significant and so the null hypothesis can be rejected at 
a 95% significance level. Since the test is one-tailed, the 
null hypothesis cannot be rejected if Zt< -1.96. Even 
though it means that the differences are significant in 
those cases, a negative αα ,,_ reftdifft zzz −=  implies an 

upward curve in fig 1 as the seizure is approached. 
Seizure 6 in fig. 1 can be one such instance. 

1 1.5 2 2.5 3
0

5

10

15

time (hours)

z αα αα

 
Figure 2. Time smoothened profiles of the Mantel statistics 
during inter-ictal states. The dark line shows the profile for 
seizure 1, patient P092. 
 
Fig. 3 presents the Zt scores as a function of time, for 
seizures 1 to 6 of the patient (P092). Zt scores were 
computed for three different reference times. In other words, 
the z-scores at 90 minutes, 100 minutes and 110 minutes 
prior to a seizure were used as α,refz . Fig. 3 shows profiles 

of Zt scores for all the three reference times. Since we are 
particularly interested in Zt scores > 1.96 (critical threshold), 
we make the following observations: 
1. 5 out of the 6 seizures (the exemption being seizure 3) 

have clear time-instances where atleast one of the three Zt 
scores are greater than the critical threshold. 

2. The time-instances where critical thresholds are crossed 
vary from seizure to seizure. 

3. The Zt profiles corresponding to the three reference times 
(90, 100 & 110 minutes) are mostly consistent with 
respect to crossing the thresholds. Occasional 
discrepancies are seen, perhaps due to rapid fluctuations 
within the z-scores at reference times. 



 

From the 1st observation above, we have clear evidence 
of spatial activity changes in the epileptic intracranial EEG 
data as the patient approaches seizure state. The 2nd 
observation tells us that the times at which the statistical 
changes are observed vary across seizures. This may 
indicate that the seizure markers in the form of spatio-
temporal pattern changes, perhaps, are a complex function 
of the type of seizures and also the pathological state of the 
brain and possibly many other variables.  
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Figure 3. Illustrating the statistical difference between z-
score at time ‘t’ and z-score at a reference time, 90, 100 and 
110 minutes before a seizure. Top to Bottom: profiles of z-
score statistics for seizures 1 through 6 of patient P092.  
 

IV. DISCUSSION 
 

In this study, we propose a statistical analysis to 
quantify spatio-temporal changes in intracranial epileptic 
EEG. The Mantel statistics is a reasonably useful approach 
to distinguish pre-seizure patterns from those at inter-ictal 
stage of a seizure. So far, we have analyzed on a small set of 
seizures and the results have looked encouraging. Assuming 
distinct pre-seizure patterns exist; Mantel statistics analysis 
on a much larger set of seizures associated with different 
onset circumstances and in different patients may help us in 
finding the general sensitivity of this technique. There is 
also an ongoing debate on the existence of a pre-seizure 
state and the transition from inter-ictal state to pre-ictal 

state. The proposed analyses may serve as a step ahead in 
answering these issues. 
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