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Abstract—Use of spectral priors in optical tomography has 
significantly improved accuracy and quality of images, when 
applied in two-dimensional (2-D) models. However, the size of 
the problem increases substantially when applied in 3-D. Two 
methods are presented here that make 3-D spectral imaging 
computationally feasible. The ‘data-subset’ approach uses a 
smaller subset of available measurements to reduce the size of 
the inverse problem. The basic principle consists of using a 
dynamic criterion to select optimal subsets that capture the 
major changes in the imaging domain. Additionally, the 
sensitivity matrix is analyzed and made sparse based on a 
suitable threshold. Sparse matrix storage further reduces the 
memory requirements (to 8% of full matrix) and provides less 
than 2% percent difference in quantification compared to use 
of full matrices in the image reconstruction.  

I. INTRODUCTION 
he relative transparency of biological tissues to near 

infra-red (NIR) light(low absorption from hemoglobin 
and water) allows penetration of photons through up to a 
dozen centimeters. This is the basis of optical imaging, 
which provides functional information through images of 
total hemoglobin, oxygen saturation and water that directly 
relates to the vascular and metabolic status of the tissue. NIR 
Imaging uses frequency domain or time domain 
measurements of light reflectance/transmittance at tissue 
boundaries to separate absorption and scattering properties 
with a suitable model for light propagation[1-3]. Prior 
knowledge of the primary absorbers or chromophores in the 
tissue along with multi- wavelength measurements leads to  
individual chromophore concentrations[4].  

 This imaging modality has a unique niche in diagnosis of 
breast cancer. Current breast imaging modalities such as 
mammography and MRI suffer from high false positive 
rates[5] and rely on structural features of tumors rather than 
functional information for diagnosis. Malignancies have 
higher hemoglobin due to angiogenesis and lower 
oxygenation due to high consumption. This provides the 
high intrinsic contrast potentially available through NIR 
tomography by imaging these absorbers[6, 7]. In addition, 

scattering provides structural information relating to the 
composition of the tissue[8, 9].  
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The spatial resolution of optical imaging is limited by the 
dominance of scattering over absorption[3, 10] making 
image reconstruction a difficult problem with a cost on the 
quantitative accuracy that cannot be overcome without prior 
information regarding the imaging domain. A major 
improvement in accuracy of optical images occurred with 
the incorporation of spectral priors that implements the 
expected spectral shapes of the chromophore and scattering 
models into the image formation process[11-13]. The 
approach uses simultaneously all available wavelengths of 
boundary data and incorporates the Beer’s law for 
absorption and an empirical approximation to Mie theory for 
scattering[14, 15] as constraints. This reduces the solution 
space as well as the number of parameters to be 
reconstructed for and hence creates a more robust and stable 
algorithm. Applied in 2-D studies using continuous 
wave[11, 12], and frequency domain[13] data, results show 
reduced inter-parameter cross-talk and higher stability of the 
reconstruction to noise in measurements.  

Our aim is to apply spectral priors in a 3-D model for 
light propagation, to extend the benefits of this approach to 
3-D. However, 3-D spectral imaging faces a set of 
challenges due to the nature of the formulation of 
reconstruction problem. Multi-wavelength measurements 
used simultaneously quickly translate to large vectors for the 
imaging geometry under consideration. Additionally, 
reconstructing for multi-parameters (chromophore 
concentrations and scatter parameters) directly along with 
the large mesh sizes in 3-D quickly complicate the problem 
with huge memory requirements for inversion (ten times that 
for the conventional method without priors in a typical 
setting). Some of the approaches to deal with large 
computational problems involve a sub-zone type 
approach[16] or approximation of the mathematical 
formulation for inversion. The former method has 
difficulties dealing with boundaries that arise by 
approximating the 3-D volume into sub-zones which will 
result in loss of photons at the boundaries of the sub-zones. 
Schweiger et al[17] presented an alternate formulation for 
the Hessian in the Gauss-Newton setting, in order to exclude 
the explicit computation and storage of the Hessian. 
However, this method is not optimal in the current setting 
due to our large measurement data set.  

We present here, alternate methods for applying spectral 
priors in 3-D. Specifically, we focus on a dynamic criterion 
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to choose a subset of the available measurement set, which 
provides most information regarding the imaging domain. 
Use of this subset reduces the computational size of our 
problem significantly. In addition, we explore sparse matrix 
storage solutions in the frame-work of the 3-D spectral 
image reconstruction problem to reduce memory 
requirements and make the computation faster. We present 
results using these methods and future directions for 
methods with spectral priors. 

II. METHODS 

A. Imaging System 
SoftScanTM is a time domain breast imaging clinical device 
developed by ART Advanced Research Technologies Inc. It 
was used as the imaging geometry in this study[18]. Figure 
1(a) shows the system. The subject being imaged lies 
prostrate with the breast pendant; the breast fits into a 
rectangular box filled with an Intralipid matching liquid 
having optical properties similar to the breast tissue. A 
single source is raster scanned in step-and-shoot mode with 
a 3mm step size along the x and y directions; with five 
associated detector positions (see Fig. 1(b)) obtaining 
temporal point spread functions at four wavelengths in the 
NIR. Measurements on this geometry (mean time and 
intensity) were converted into frequency domain and a finite 
element model for diffusion approximation was used for 
image reconstruction. The diffusion approximation is used 
here because it holds for this detection geometry and tissue 
type where scattering dominates over absorption[19]. Details 
related to our finite element model can be found 
elsewhere[10, 20]. The theoretical framework for the 
incorporation of spectral priors has been explained in earlier 
references[13, 21].  

 
Figure 1: (a) Depiction of the SoftScanTM, a time domain multi-wavelength 
breast imaging clinical device developed by ART Advanced Research 
Technologies Inc. (b) Source-detector geometry raster-scanned along the 
periphery of the rectangular slab containing the breast and an optical 
matching liquid. 

B. Data subset Method 
The main goal of the data subset method is to allow 

dealing with the large number of measurements  
encountered in breast diffuse optical tomography. The 
geometry described above yields ~10000 measurements 
(amplitude and phase) for a single wavelength on a typical 

breast sized domain. In the spectral method, multi-
wavelength data are stacked together resulting in a total of 
~40000 data points. The main assumption in this method is 
that because of redundancies not all measurements are 
required to reconstruct the key heterogeneities in the image. 
By separating the data points into lines and using a 
projection error criterion, a subset of the data is dynamically 
chosen. The projection error (χ2) is the least squares 
functional being minimized in the image reconstruction,  
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where M is the total number of measurements in a single 
line, Φmeas is the measured data and Φcal is the calculated data 
from the model. By starting with a homogeneous domain 
with background properties close to true values, and 
calculating χ2, we obtain the error for individual lines of 
data. Using only those lines having maximum error and 
hence, maximum effect on the reconstruction, we 
reconstructed images for oxyhemoglobin, de-
oxyhemoglobin, water and scatter parameters. The latter 
correspond to the scatter amplitude A and scatter power b 
which are governed by the spectral constraint 
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sµ  is the reduced scattering 

coefficient as a function of wavelength λ [14, 22].  

C. Sparse Matrix Storage Methods 
The raster-scanning imaging geometry has some built-in 

advantages. One key aspect relating to this governs the 
sensitivity matrix. The sensitivity matrix holds the values for 
sensitivity of the boundary data (amplitude and phase) to 
local changes in chromophore concentrations and scattering. 
The sensitivity matrix has a banana-shape due to the 
diffusive nature of light, along the path of propagation from 
source to detector; and the values reduce quickly for nodes 
further away from this path. Hence, by setting a threshold 
based on this distance, and equating all values in the matrix 
below this threshold to zero, we can make the matrix sparse. 
Sparse matrix storage has much lesser memory 
requirements, and this eases the computational burden of the 
problem. This approach was implemented in the framework 
of the data subset approach. Inversion was carried out for 
both methods using a Gauss Newton method with 
Levenberg Marquardt regularization[10]. The stopping 
criterion for the image reconstruction was when projection 
error change between successive iterations was less than 2% 
of previous iteration error. 

III. RESULTS 

A. Projection error criterion 
The data subset method was applied to data generated by 

the finite element model on a test phantom containing a 
single inclusion of size 15×15×20 mm centered at 
(30,30,30) mm in a rectangular slab of size 96×96×60mm, 
with 4:1 contrast in oxyhemoglobin. Figure 2 shows the 



 
 

 

projection error for different lines of data along the x-axis in 
3 mm resolution; each line has the source raster-scanned 
along the y-axis. The maximum error corresponds to slice 
10, where the inclusion was centered. The projection error 
was used to select only 3 lines of data having maximum 
error, for image reconstruction, and the inclusion was 
recovered in the right location. Overall, the data subset 
method yielded less than 4% difference in quantification, 
compared to use of all available data, as tested on multiple 
phantoms[23].  

 
Figure 2: plot of the projection error for different lines (slices) of data in the 
case of  a test phantom containing an inclusion centered at 30mm along the 
x axis. The maximum corresponds to the location of the inclusion. Only 
those lines with higher projection error were chosen for image 
reconstruction. 

B. Sensitivity Matrix Storage 
Shown in Figure 3(a) is a 3-D image of the matrix 

containing the sensitivity of logarithm of amplitude data to 
change in absorption coefficient, for a single measurement 
pair. Only the nodes close to the measurement pair have 
information significant to the image reconstruction. A 
threshold was set having the average of the matrix values, 
individually for each chromophore and each wavelength 
measurements and values below this threshold were set to 
zero. Figure 3(b) shows the sparsity pattern of the matrix, 
and the number of non-zero entries of this sparse matrix was 
only 8% of the full matrix.  

 

 

 
Figure 3: (a) sensitivity matrix plotted as a 3-D image for a single source-
detector pair. Values for nodes away from the measurement are close to zero 
and do not have a significant impact in the inversion. (b) Sparsity pattern of 
the whole sensitivity matrix (for all chromophores, scatterers and 
wavelengths); making the matrix sparse reduces the number of non-zero 
entries to 8% of the full matrix. 

 
Figure 4 shows a comparison of reconstructed images for 

oxyhemoglobin using the data subset approach and 
implementing the sensitivity threshold with sparse matrix 
storage. Both results were comparable with less than 2% 
difference in quantification for all reconstructed parameters . 

 

 
Figure 4: top row shows two cross-sections from the reconstructed 3-D 
oxyhemoglobin image obtained using data subset method without sparse 
matrix storage; bottom row shows corresponding results using a sparse 
sensitivity matrix with reduced memory requirements, obtained using 
thresholds as described. 

IV. DISCUSSION 
In the application of spectral priors to 3-D optical 

tomography computational resources are often pushed to 
their limits. All simulations carried out here were performed 
in a high-end multi-processor cluster, containing up to 16 
gigabytes of memory. Yet, without the data subset method, 
spectral priors were not feasible in 3-D for reasonable breast 
mesh volumes. As 3-D optical imaging expands, research 
related to alternate computationally-efficient methods for 
image reconstruction is necessary. Two such methods were 
presented here. 

The data subset approach indicates that the use of a subset 
of measurements providing most information regarding the 
imaging domain may be sufficient in image reconstruction. 
Additionally in the data subset method framework the 
sensitivity matrix stored as a sparse matrix reduced the 
memory needed to 8% of the full matrix without significant 
cost on accuracy. 

The spectral approach holds considerable promise in 
accurate functional and structural imaging from optical 
tomography. It is desirable in increase the number of 
interrogation wavelengths in order to sample accurately 
changes due to different chromophores. Hence, the 
computational cost associated with using more wavelengths 
has to be optimized. Spatial priors from another modality 



 
 

 

such as MRI can further reduce the burden by incorporation 
of anatomical structure to aid multi-region fitting. In this 
approach, the information relating to location of different 
tissue types such as adipose, fibro-glandular and tumor will 
be used along with spectral priors to reconstruct 
homogeneous functional and structural average values for 
each of the regions. 

It is important to re-examine the assumptions behind 
spectral priors, namely that the principal absorbers and their 
spectra are known and that scattering can be approximated 
using  an empirical power-law[14, 15]. Calibration of optical 
spectra specific to the imaging system helps optimize the 
accuracy relating to the first assumption[24]. The 
assumption regarding scattering has to be investigated 
further[25]. Additionally, differences in spectra for liquid 
surrounding the breast tissue have been taken into account 
for clinical subjects using prior knowledge of tissue 
boundary. In the future, possibilities of spectral changes in 
necrotic tissue present in some cancers could be studied and 
incorporated into the image reconstruction.  
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