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Abstract— This paper introduces the Hilbert Analysis (HA),
which is a novel digital signal processing technique, for the
investigation of tremor. The HA is formed by two complementary
tools, i.e. the Empirical Mode Decomposition (EMD) and the
Hilbert Spectrum (HS). In this work we show that the EMD
can automatically detect and isolate tremulous and voluntary
movements from experimental signals collected from 31 patients
with different conditions. Our results also suggest that the tremor
may be described by a new class of mathematical functions
defined in the HA framework. In a further study, the HS was
employed for visualization of the energy activities of signals. This
tool introduces the concept of instantaneous frequency in the field
of tremor. In addition, it could provide, in a time-frequency-
energy plot, a clear visualization of local activities of tremor
energy over the time. The HA demonstrated to be very useful to
perform objective measurements of any kind of tremor and can
therefore be used to perform functional assessment.

I. I NTRODUCTION

Tremor is a rhythmic, involuntary muscular contraction char-
acterized by oscillations of a part of the body [1]. Neurological
disorders associated with aging are often accompanied by
tremor. It can affect various parts of the body such as hands,
head, facial structures, tongue, trunk, and legs. Although
the disorder is not life-threatening, it can be responsible for
functional disability and social embarrassment [2].

The detection and quantification of tremor are of clinical
interest for diagnostic of neurological disorders and objective
evaluation of their treatment [3], [4]. Methods based on the
Fourier transform (FT) are commonly employed for this pur-
pose, specially because of the similarity between the tremor
to a sine wave [2]. For instance, the Weighted Fourier Linear
Combiner (WFLC) [5], characterizes the tremor based on its
approximation by a sinusoidal waveform. Another example,
is the extraction of frequency parameters from the power
spectrum (based on the FT) of the tremor for classification
purposes [2], [3].

Some inherent drawbacks of techniques based on the FT are
pointed out in [6]. First, the signal islinearly decomposed as
combination of sines and cosines. Secondly, the compromise
between time and frequency resolution of methods based on
the FT may not highlight the presence of local oscillations in
the signal which can have important physical meaning.

Recently, a high-resolution technique that solves most of
limitations of the Fourier Analysis has been successfully

applied to the investigations of seismological and biological
signals [7], [8]. This method, known as Hilbert Analysis (HA)
[9], is a tool for investigation of nonlinear and nonstationary
time-series. The HA is formed by two complementary tools,
i.e. the Empirical Mode Decomposition (EMD) and the Hilbert
Spectrum (HS).

In this paper we introduce the HA to the analysis of tremor.
First, we show how this technique may be employed in practice
for an automatic detection and visualization of tremor from
different pathologies. Secondly, we show that other physiolog-
ical events that normally accompany the tremor, e.g. spasms,
may also be identified by the HA. And finally, we suggest that
the tremor may be described by a new class of mathematical
functions defined in the HA framework.

II. T HE HILBERT SPECTRUM

The generation of the Hilbert Spectrum (HS) is performed
into two steps. First, the Empirical Mode Decomposition
(EMD) decomposes the input time-series into a set of functions
designated as Intrinsic Mode Function (IMFs), and secondly
those functions are used for generation of a 3-D plot called the
Hilbert Spectrum. The following sections provide a description
of the constituent steps of the HA.

A. The Empirical mode decomposition

The main aim of the EMD is to decompose a time-series
into a set of components or functions, known as IMFs. This
class of function was defined in [9]. To be considered an IMF a
time-series has to satisfy two conditions: first, in the whole data
set, the number of extrema and the number of zero crossings
must be either equal or differ at most by one, and secondly, at
any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

Note that the decomposition of a time-series into IMFs
consists in the identification of the basic units (IMFs) in that
time-series. A practical procedure, known as sifting process,
is employed for this purpose. Details about it are given in [9].
An important feature of the sifting process is that it, adaptively
and based solely on the data, is able to find appropriate time-
scales that may reveal important information embedded in
the original signal. In fact, single IMFs may have a physical
meaning, and an important issue in any practical application
is to determine the existence of this meaning.



B. Hibert Spectrum generation

Once IMFs are obtained as result of the sifting process, it is
possible to generate the Hilbert Spectrum, or a 3-D plot (time-
frequency-energy) that represents the variation of frequency
and energy of IMFs over time. The notion of frequency and
energy for each IMF is obtained by employing the concept of
analytic signals.

An analytic signal is a complex signal with one-sided spec-
trum that preserves all information contained in the original
signal [10]. Note that the representation of a real signal as
an analytical signal eliminates redundancy, since the negative
half of the signal frequency spectrum containing redundant
information with respect to the positive half is eliminated.
A very simple way of estimating an analytical signal is by
employing the Hilbert Transform [10]. The real part of an
analytical signal is the original input time-series, whereas its
complex component is the Hilbert Transform of that signal.

Given an analytic signal,Z(t), defined asZ(t) = X(t) +
iY (t) = a(t)ejθ(t), whereX(t) is the input time-series and
Y (t) the Hilbert Transform ofX(t), the following instanta-
neous attributes ofZ(t) can be defined:

a(t) = [X(t)2 + Y (t)2]1/2 (1)

θ(t) = arctan
(

Y (t)
X(t)

)
(2)

ω(t) =
dθ(t)
dt

(3)

wherea(t) is the instantaneous amplitude,θ(t) is the instan-
taneous phase andω(t) is the instantaneous frequency.

With the definition of instantaneous attributes above the
Hilbert Spectrum,H(ω, t), is generated as follows:

1) Estimate intrinsic mode functions from the input signal.
2) Estimate the instantaneous attributes of each IMF.
3) Generate a 3-D plot,H(ω, t), in which the amplitude is

contoured in the time-frequency plane.

In contrast to other time-frequency methods, the HS does
not define an explicit equation that maps a 1-D time-series
into a 3-D representation that provides information about time,
frequency and energy (amplitude).

From the HS it is also possible to estimate the Marginal
Hilbert Spectrum (MHS),h(ω), which is defined in Equation
4. In practiceh(ω) is analogous to the Fourier power spectrum.

h(ω) =
∫ T

0

H(ω, t)dt (4)

III. T HE EXPERIMENTAL PROTOCOL

In order to assess tremor characteristics we studied its
behavior in 31 patients suffering from different pathologies.
The average age of patients was 52.3 years old (ranging from
23 to 84 years old). All patients provided their written consent
for the experiments.

The diagnosis of the condition of patients was given by the
neurological staff of the General Hospital of Valencia (GHV,

Spain) and the functional state of patients was evaluated by
means of the Faher scale. Ethical approval for this research
has been granted by the Ethical Committee of the GHV.

A. Sensors

The tremor was detected by a customized sensor [11], which
is based on the combination of two independent gyroscopes
placed distally and proximally to the joint of interest. The
joint angular speed is obtained by subtraction of the angular
speed measured by one gyroscope from the angular speed
measured by the other one. This system could measure the
orthosis joint angle, velocity and acceleration without any
external reference. Unlike accelerometers, the measurement
of angular velocity is not influenced by gravity and they are
in general accurate both in frequency and amplitude. The
main advantages of this system is that it is light, cheap and
does not cause any discomfort to subjects thus providing
a powerful tool to monitor biomechanical variables during
physiological tremor movements. Since gyroscope provides
absolute angular velocity in its active axis, the combination
of two independent gyroscopes was used. Gyroscopes were
placed in order to estimate following movements of the upper
limb: 1) Elbow flex-extension, 2) Forearm pron-supination, 3)
Wrist flex-extension, and 4) Wrist deviation.

B. Tasks

Six different tasks were employed for excitation of tremor:
1) Rest, 2) Reaching for an object, 3) Drawing a spiral, 4)
Arm outstretched, 5) Touching nose, and 6) Moving a cup. In
all tasks the patient was sitting on a chair. This set of tasks
aims to stimulate all different types of tremor.

IV. DATA ANALYSIS

For estimation of the voluntary movement,VMref , the
cutoff frequencies of this filter was set to 0 - 2 Hz. The cutoff
frequencies employed for detection of the tremor,Tref , were
2 - 20 Hz. Previous investigation of this data set showed that
the tremor activity was limited between 3 Hz and 8 Hz, [12],
and that voluntary movements were always bellow 2Hz for
the tasks described above. Note that those digital filters do not
introduce phase lag in the filtered signal.

The time-seriesy was also automatically decomposed via
EMD. This decomposition yielded intrinsic mode functions
from which it was possible to identify the tremorTemd and
voluntary movementVMemd. A comparison betweenTemd

and Tref was performed and resulted in the generation of
the estimated square error signalê =

√
(Tref − Temd)2.

This signal measured the discrepancy between automatic and
manual estimates.

An additional investigation showing how the activities of
tremor and voluntary movement were perceived in the fre-
quency domain was also performed. For this purpose, the HS
and MHS were employed.
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Fig. 1. Decomposition of a movement profile (Signal) detected from an
Essential tremor patient provided by EMD. Four intrinsic mode function
(IMF1, . . . , IMF4) were obtained.IMF1 was identified as the tremulous
movement.

V. RESULTS

A. Automatic detection of tremor

The signal presented in Figure 1 (top) was detected from a
patient with Essential tremor performing the draw spiral test.
The signal components, or intrinsic mode functions, obtained
by means of the EMD are also shown in this figure. The
first component identified asIMF1 is the finest time-scale
component, whereas the last component (IMF4) is the largest
time-scale component. A comparative study between different
IMFs and the tremor signal (obtained manually) showed that
the IMF1, which is the component that best represents the
high frequencies of the signal, was an accurate estimate of the
tremor, i.e. this component had a very strong physical meaning.

The same analysis was carried out for all available data
sets. It was also noted that the voluntary movement can be
obtained by the summation of all available IMFs but the first
one, which represented the tremor. This investigation showed
that the first IMF was always a precise estimate of the tremor.
This accuracy was quantified by the mean square error signal,
ē = mean(ê). The average and standard deviation of distinct
signal errors̄e grouped by patients with different pathologies
were estimated. The results indicated that a very small error
was obtained.

B. Visualization of tremor on the Hilbert Spectrum

It has been shown that a particular intrinsic function is
physically related to the tremor. Besides the representation of
embedded components in the signal those functions may also
be employed for a time-frequency analysis of time-series.
This is obtained via the Hilbert Spectrum. In practice it
was observed that the Hilbert Spectrum could describe the
variation of the energy and frequency of tremor and voluntary
movement activities distinctly. That is, the energy of tremor

Fig. 2. Hilbert Spectrum of an Essential tremor patient performing the task of
Keeping the arms outstretched. Note that the energy is clearly separated from
the energy of the voluntary movement. The high levels of energy activities on
the HS are perceived when the patient is performing the task.
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Fig. 3. Marginal Hilbert Spectrum estimated from the signal shown in Figure
2. This energy is bimodal indicating the clear separation between voluntary
and tremor in frequency domain.

and voluntary movement was very well localized in time and
frequency. This is illustrated in Figure 2 for a patient with
essential tremor. The oscillations around 5 Hz are related
to tremor activities whereas the others are related to other
components of the global movement.

C. Analysis of the power based on the MHS

The integration of the HS over the time results in the
MHS. The MHS describes how the signal energy varies as
function of the frequency. Figure 3 shows the MHS for a
patient with essential tremor performing the task of touching
the nose. Note that the distribution provided by the MHS
is bimodal and that its first peak is related to the voluntary
movement, whereas the second is the energy of tremor activity.



VI. D ISCUSSION

In this section, an analysis of the results of the above
proposed methodology is reported. We mainly focus on the
application of Empirical Mode Decomposition as a new tool
for the study of tremor time series. EMD has been identified as
a very useful tool for an automatic decomposition of the signal
into tremor and voluntary signal. The results presented in this
paper showed that the first IMF could accurately estimate
the tremor. This was observed in the whole data set, which
had more than 2000 samples of signals with tremor activity,
collected from 31 patients performing 6 different tasks.

Currently, there is no available technique that can accurately
model the tremor [3]. Most of methodologies are based on the
assumption that the tremor is stationary or is similar to sine
wave. The fact that the tremor time series could be described
by an intrinsic mode function states that the tremor signal, for
all patients considered in this study, satisfies two conditions
[9]: 1) in the whole data set, the number of extrema and the
number of zero crossings must be either equal or differ at
most by one; 2) At any point, the mean value of the envelope
defined by the local maxima and the envelope defined by
the local minima is zero. These observations suggest that any
investigation concerning the modelling of tremor should take
into account those properties.

Having obtained the intrinsic mode function components,
the Hilbert transform can be applied to each component and
the instantaneous frequency can be computed, according to
equations (1), (2) and (3). The Hilbert Spectrum enables
the representation of the amplitude and the instantaneous
frequency of the input signal as function of time in which the
amplitude could be contoured on the time-frequency plane.
Since the tremulous movements is well described by the first
IMF, this method is a very useful tool for visualization of
energy activity of tremor.

Due to its oscillatory characteristic, tremor is well suited to
spectral analysis such as the Fourier Transform, which is the
most popular method of tremor quantification [3]. FFT-based
spectral methods model the input signal as stationary periodic
signal. Yet tremor amplitude and frequency are time-varying
[3], and therefore it is desirable to develop quantitative
methods which do not assume stationarity. The Marginal
Hilbert Spectrum offers a measure of the total amplitude
(or energy) contribution from each frequency value over the
entire data span being able to precisely detect the energy
activities of tremor and voluntary movements. In the Fourier
representation, the existence of energy at a frequency,ω,
means a component of a sine or a cosine wave persisted
through the time span of the data. Here, the existence of
energy at a frequency,ω, means only that, in the whole time
span of data, there is a greater likelihood for such wave to
have appeared locally.

VII. C ONCLUSION

This paper introduced Empirical Mode Decomposition as a
novel tool for analysis of tremor time series. The main advan-

tage of this technique it that it allows an automatic estimate of
the tremulous movement in the different pathologies consid-
ered in this paper. Additional investigation should be pursued
in order to validate the performance of this technique in the
estimation of tremulous movements from others pathologies.

The authors believe that there is an evidence that EMD could
identify other types of involuntary movements besides tremor,
such as spasms. Nevertheless, this hypothesis should be vali-
dated by means of future investigation correlating involuntary
movement activity and EMG signals from the muscles involved
in generating these movements. The technique presented is a
high-resolution technique that solves most of limitations of the
Fourier Analysis (the standard technique to the study of tremor
time series). This technique provides, in a time-frequency-
energy plot, a clear visualization of local activities of tremor
energy over the time.

The application of this technique introduces new attributes
to the tremorous signal such as instantaneous amplitude, in-
stantaneous phase and instantaneous frequency. This attributes
opens the research field in the tremor field. Future work will
be focused on the use of these parameters as parameters for
the diagnosis of tremor pathologies.
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