
 

  Abstract—In this work we present a technique for 
applying Blind Source Separation (BSS) to single 
channel recordings of Electromagnetic (EM) brain 
signals. Single channel recordings of brain signals are 
preprocessed through the method of delays, and the 
delay matrix processed with the BSS technique described 
here called LSDIAGTD which uses temporal 
decorrelation to implement the now popular 
Independent Component Analysis (ICA) algorithm. This 
allows the identification and extraction of statistically 
independent sources underlying these single channel 
recordings. In particular we depict the analysis of single 
channel recordings from a Brain-Computer Interfacing 
paradigm. We show that BSS technique applied in this 
way extracts a series of codebook vectors representing 
the spectral content underlying the recorded signal. It 
then becomes possible to identify and extract particular 
rhythmic activity underlying the recordings. We show 
that rhythmic activity in the 8 to 12Hz band can be 
extracted in the case of imagined hand movements for a 
particular BCI paradigm. 
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I. INTRODUCTION 
 

In the analysis of electromagnetic (EM) brain signals it is 
required to extract neurophysiologically meaningful 
information either for clinical reasons, such as is the case 
with the analysis of the epileptic electroencephalogram 
(EEG) to extract information on underlying epileptogenic 
sources. Similarly EEG can be used as in the field of Brain-
Computer Interfacing (BCI) where brain signals are 
interpreted to provide a means of communication. A 
powerful technique in the decomposition of multi-channel 
EM brain signals is the technique of Blind Source 
Separation (BSS), in particular recent efforts in Independent 
Component Analysis (ICA) to this end. BSS provides a 
means of decomposing multi-channel EEG recordings into a 
series of underlying neural sources as well as separating out 
artifactual components such as ocular artifact, line-noise 
contamination, etc. However, BSS techniques such as ICA 
are generally applied to multi-channel recordings and the 
analysis of single channel recordings with BSS techniques is 
not usually performed.  
 However, there are instances where just one recording 
channel is either available or desired, the difficulty of 
isolating signals of interest is greatly increased. In general, 
rhythmic activity in the EEG is of interest, (c.f. alpha-, beta-, 

delta- and gamma-band activities, or rhythmic seizure 
activity for example). It would be particularly useful to be 
able to automatically isolate, visualise and track multiple 
neurophysiologically meaningful sources underlying the 
ongoing single channel EEG recording. 
 In [1] we introduced a method whereby it is possible to 
break down single channel recordings of EM brain signals 
into their underlying components, irrespective of the 
components’ origin. The method relies on a combination of 
a nonlinear dynamical systems framework and a standard 
implementation of ICA. In [2] we provide an innovation 
whereby we show how this technique could be used to 
automatically process single channels of EEG data through 
the introduction of constrained ICA which allows for the use 
of prior information in the ICA process and means that only 
a single statistically independent component (IC) will be 
extracted for each given reference. 
 In this work we present a further application and 
interpretation of the BSS technique based on temporal 
decorrelation known as LSDIAGTD [3], applied to single 
channel recordings of BCI data. A BCI system is a 
communication system in which messages or commands 
that an individual sends to the external world do not pass 
through the brain’s normal output pathways of peripheral 
nerves and muscles but is detected through EEG activity. 
The original idea of brain-computer communication was 
first mentioned in [4], it was first presented to use the 
observable electrical brain signals as carriers of information 
in man-computer communication. Nowadays BCI has 
become a popular research topic in the biomedical signal 
processing area. 
 In the next section we overview the single-channel 
analysis technique based on the method of delays and BSS, 
followed by a brief explanation of the BCI dataset used to 
highlight the technique. 
 

II. METHODOLOGY 
 
A. Single Channel Analysis 
 
ICA performs BSS of statistically independent sources, 
assuming linear mixing of the sources at the sensors, 
generally using techniques involving higher-order statistics 
or temporal decorrelation. Several different implementations 
of ICA to EM brain signals can be found in the literature; 
[5,6]. In the standard, noise free, formulation of the ICA 
problem, the observed signals x(t) are assumed to be a linear 
mixture of an equal number of unknown but statistically 
independent source signals s(t), i.e., 

Blind Source Separation in single-channel EEG analysis: An application to BCI 
 

C. J. James*, Senior Member, IEEE and S. Wang, Student Member, IEEE 

Signal Processing and Control Group, ISVR, University of Southampton, Southampton, UK 
 

*C.James@soton.ac.uk 



 

 
x(t)=As(t),       (1) 

 
where the square mixing matrix A is also unknown but 
invertible. The problem is solvable up to a permutation, and 
sign and power indeterminacy of the sources, by finding an 
appropriate de-mixing matrix W=A-1 which allows 
estimation of the source waveforms by s(t) = Wx(t). 
 In conventional (ensemble) ICA the columns of the 
mixing matrix A represent the spatial distribution of each of 
the n independent sources, si(t) (i=1,…, n). This is in 
keeping with the popular view that EM brain signals as 
measured at the scalp are due to a linear instantaneous mix 
of a number of underlying sources. 

ICA has previously been applied to single channel data 
to learn a codebook of features for the signal [7], and in [8] 
we introduced the technique applied to ictal EEG. This can 
also be interpreted as learning filters to discriminate 
between independent source processes with disjoint spectral 
support. To apply ICA to a single channel it is first 
necessary to form a ‘multi-channel’ data representation. 
This can be done by generating a series of delay vectors 
taken from the observed data x(t), given by: 
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for a delay vector of length M. When ICA is applied to delay 
vectors formed from a mixture of bandlimited sources it will 
identify a multiple number of components with each source 
proportional to the source bandwidth. The columns of A 
associated with a given source can be interpreted as shifted 
versions of the mixing filter. Finally, to ensure that the 
sources can be separated (an implicit assumption in the ICA 
model) using the filters we clearly need to additionally 
assume that they all have disjoint spectral support.  The ICA 
process when applied to a matrix of delay vectors is 
depicted graphically in Fig. 1, in essence it is possible to 
interpret the linear mixing model for the single channel case 
as 
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where ∗  denotes convolution. In effect, this translates to the 
addition of a series of convolutions of M ‘code-book’ 
vectors, ( )tia , convolved with the impulse response of a 
corresponding set of M filters, ( )tis , where the impulse 
responses are assumed to be statistically independent of 
each other. 
 
B. The Brain Computer Interfacing Paradigm 
 
 The single channel analysis technique is trialled here on 
the 2003 international BCI competition dataset III (motor 
imagery) [9], which was provided by the Department of 
Medical Informatics, Institute for Biomedical Engineering, 
University of Technology, Graz, Austria. This dataset was 

recorded from a normal 25-year old female subject who sat 
relaxed in a chair with armrests during the sessions. The task 
was to control a feedback bar by means of imagined left or 
right hand movements. The EEG from three channels (C3, 
Cz, and C4) was sampled at 128 Hz and bandpass-filtered 
between 0.5 to 30Hz initially. The experiment included 7 
runs with 40 trials each. All runs were recorded on the same 
day with several short breaks in between. The data consists 
of 280 trials of imaginary hand movements, with an equal 
number of left and right hand trials. Each trial is of 9s 
duration: the first 2s were quiet; then at t=3s, a visual cue 

 

 
 

Fig. 1. The ICA problem when applied to a single channel
measurement within a matrix-of-delays framework, translates into
the addition of a series of convolutions of M code-book vectors
{ai(t)} convolved  with the impulse response of a corresponding
set of M filters {si(t)} – where the impulse responses are assumed
to be as statistically independent of each other as possible. 

 

Fig. 2. A series of curves showing the FFTs of each of the 
codebook vectors (the columns of the mixing matrix ai(t)) for one 
epoch data recorded from C3 (M=90, 5 lags for LSDIAGTD). Each
FFT consists of just a single maximum at a particular resonant 
frequency. The magenta line depicts the total sum of all spectra 
and spectra depicted in blue have peak frequencies in the interval 
8Hz < fp < 12Hz. 



 

(arrow) is presented pointing either to the left or the right 
(randomly). This is followed by another 6s where the 
subject uses imagined hand movements to move the 
feedback bar in the proposed direction. The specific task is 
to provide a classifier to identify each of the left and right 
movements for each of the 140 unlabeled single trials (we 
only analyse the labelled dataset for this analysis). 
 

III. RESULTS 
 
Each epoch is analysed with this technique on an epoch by 
epoch basis. Fig. 2 depicts a series of curves showing the 
FFTs of each of the codebook vectors (the columns of the 
mixing matrix ai(t)) for one epoch data recorded from C3 (M 
was set to 90 based on previous analysis and the number of 
lags used for LSDIAGTD was 5). In each case the FFT 
contains just a single maximum at a particular resonant 
frequency, notice also that more than one ‘component’ is 
representative of a particulat codebook vector. The magenta 
line depicts the total sum of all the spectra and in particular 
the spectra depicted in blue have peak frequencies in the 
interval 8Hz < fp < 12Hz, as the imagined hand movements 
in the BCI dataset are expected in this 8 to 12Hz band [10]. 
Fig. 3(a) depicts the 7 ICs corresponding to the 8 to 12Hz 
codebook vectors; Fig. 3(b) shows the ICs multiplied by 
their corresponding codebook vectors and the result of each 
projected back to the measurement space, and Fig. 3(c) 

depicts the summed and projected ICs corresponding to 
cerebral activity within the defined frequency range. An 
Event Related De-synchronisation (ERD) [10] of activity in 
this band is expected after the stimulus is presented at the 3s 
mark. 
 In Fig. 4 the results obtained from applying this 
technique a number of epochs of EEG recorded from 
channels C3, Cz and C4. Four sets of results are presented 
for each recording channel where the ERD is averaged over 
5, 10, 30 and 70 averaged epochs. It can be seen that for as 
few as 10 averaged epochs it is clear that there is an ERD of 
activity in this band in the channel contraleral to the 
presented stimulus. 
  

IV. DISCUSSION AND CONCLUSIONS  
 
 We show here how this single-channel BSS technique 
can be used to decompose a single-channel recording of 
brain activity into its consitutent components. Through an 
exemplar application of ERD extraction in motor imagery 
withiin a BCI paradigm, we show that this technique can be 
used to identify and isolate rhythmic components underlying 
the recordings. In practice it may still be more feasible to 
use band-pass filtering if a known, fixed frequency band is 
to be monitored, however, the technique described here is 
well suited to discovering rhythmic components/ sources 
underlying single channel brain recordings. 

 

 
 

Fig. 3. (a) Seven independent components (ICs) chosen on the basis of the 7 codebook vectors in Fig. 2 which have a resonant frequency 
within the range 8Hz < fp < 12Hz. (b) The ICs of (a) multiplied by their corresponding codebook vectors and the result of each projected
back to the measurement space. (c) The summed, projected ICs depicted in (b) corresponding to cerebral activity within the defined 
frequency range. 
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Fig. 4. Results obtained from applying the single channel analysis technique to a number of 9-second epochs of EEG recorded from channels 
C3, Cz and C4. The datasetset forms part of a BCI paradigm where an event related desynchronisation (ERD) of the 8~12Hz band   power is
expected after the stimulus onset (indicated by the vertical dotted line) on the channel contralateral to the visual stimulus. In each case the 
data was extracted by isolating those ICs within the frequency band of interest. Four sets of results are presented for each recording channel
where the ERD is averaged over 5, 10, 30 and 70 averaged epochs.  

 


