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Abstract - In this paper a new ECG denoising scheme is proposed 
using a novel adaptive wavelet transform, named bionic wavelet 
transform (BWT), which had been first developed based on a 
model of the active auditory system. There has been some 
outstanding features with the BWT such as nonlinearity, high 
sensitivity and frequency selectivity, concentrated energy 
distribution and its ability to reconstruct signal via inverse 
transform but the most distinguishing characteristic of BWT is 
that its resolution in the time–frequency domain can be 
adaptively adjusted not only by the signal frequency but also by 
the signal instantaneous amplitude and its first-order differential. 
Besides by optimizing the BWT parameters parallel to modifying 
a new threshold value, one can handle ECG denoising with results 
comparing to those of wavelet transform (WT). Preliminary tests 
of BWT application to ECG denoising were constructed on the 
signals of MIT-BIH database which showed high performance of 
noise reduction. 
 
Index Terms – Bionic wavelet transform, Denoising, ECG signal. 
 

I. INTRODUCTION 
 

The electrocardiogram (ECG) is a time-varying signal 
reflecting the ionic current flow which causes the cardiac 
fibers to contract and subsequently relax. The surface ECG 
is obtained by recording the potential difference between 
two electrodes placed on the surface of the skin. A single 
normal cycle of the ECG represents the successive atrial 
depolarization/repolarization and ventricular depolarization 
/repolarization which occur with every heartbeat [1]. These 
can be approximately associated with the peaks and troughs 
of the ECG waveform labeled P, Q, R, S, and T as shown 
in Fig. 1(a). Since ECG is mostly contaminated with noise, 
see Fig. 1(b), extracting useful clinical information from 
the real noisy signal requires reliable signal denoising 
techniques. 
Extending 1D-adjustable-resolution to 2D-adjustable-
resolution for better tradeoff between time and frequency 
resolutions has been a topic in WT for a long time. Many 
efforts focus on   applying the wavelet transform (WT) to 
the signal. But research has proven that the choice of 
mother wavelet function dramatically affects the 
appearance and quality of the resultant time–frequency 
representation. In this case attempts have been made 
introducing adaptivity into WT. Applications of AWT in 
bio-signal processing, however, are limited by the facts that 
no entropy criterion is known to be appropriate for 
biomedical applications and that the computation cost of 
AWT is usually very high [2].  
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Fig. 1.  Human’s ECG Signal: (a) Normal noise-free (b) Normal noisy 

ECG. 
 
Among these methods, BWT, introduced by Yao [2], is 
mainly developed and being optimized by the human bio-
system and has showed promising results in speech 
processing. In this paper we attempted to apply BWT with 
new modifications to be properly adjusted for ECG 
processing. 
The paper is organized as follows. Section II summarizes 
the physiological mechanisms underlying the cardiac cycle 
and reviews the morphological features, which is reflected 
in the ECG signal. Section III provides backgrounds on 
human’s auditory model and relates it to the invention of 
BWT. In section IV BWT is optimized for ECG signal 
analysis. Section V briefly talks about the denoising 
technique. Finally, summary and conclusions are provided 
in section VI. 
 

II. ECG MORPHOLOGY 
 

Each beat of the heart can be observed as a series of 
deflections away from the baseline on the ECG. These 
deflections reflect the time evolution of electrical activity 
in the heart which initiates muscle contraction. A single 
normal cycle of the ECG, corresponding to one heartbeat 
may be divided into the following sections: 
P is a small low-voltage deflection away from the baseline 
caused by the depolarization of the atria prior to atrial 
contraction as the activation (depolarization) wave-front 
propagates from the SA node through the atria. QRS-
complex is the largest-amplitude portion of the ECG, 
caused by currents generated when the ventricles 
depolarize prior to their contraction. Although atrial 
repolarization occurs before ventricular depolarization, the 
latter waveform (i.e. the QRS-complex) is of much greater 
amplitude and atrial repolarization is therefore not seen on 



  

the ECG. Finally the T-wave is the result of ventricular 
repolarization, whereby the cardiac muscle is prepared for 
the next cycle of the ECG [1].  
 

III. DEFINITION OF BIONIC WAVELET TRANSFORM 
ACCORDING TO HUMAN’S AUDITORY MODEL  

 
Previously Yao had adopted a nonlinear auditory model 
[6], in which each point of basilar membrane is modeled by 
the following equation: 
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Clearly from (1) a point of basilar membrane is modeled by 
a BPF that has a nonlinear damping. Furthermore It has 
been shown that existing a nonlinear compliance is also 
needed. This way the resulting quality factor of filter-bank 
is given by: 
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To introduce this active mechanism into WT, it is sufficient 
to replace the constant Q0 of WT by a variable QT [3]. In 
fact passing from WT to BWT is done using a T-function 
adopted from the ear model. This is the function which 
brings adaptiveness into the new transform. Equation (4) 
shows the relation between quality factors for the ear 
model: 
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In order to replace the constant quality factor with a 
variable adaptive quality factor, one can make changes in 
the mother function of the wavelet transform. Here, the 
admissible condition for h(t) implies that the mother 
wavelet function has some oscillations. This oscillation can 
be represented as: 
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where f0 is the center frequency of )(th  and )(~ th  is its 
envelope function. So the BWT mother function can be 
defined as follows: 
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Now with the new mother function, the definition of BWT 
is: 
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One can find that the relation between quality factors of 
WT and BWT by simply looking at the Fourier transform 
of their mother functions which is simply stated as 
QT=TQ0. By comparing this relation with equation (4) the 
T-function is given by: 
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In the above equation, 
21

~,~ GG  and sBWT  are constants. 
);,( haBWTx τ  is the BWT coefficient at timeτ and scale a 

and τ∆  is the calculation step. If the signal and its first-
order differential are continuous, BWT can reconstruct the 
original signal without distortion [2]. 
 
IV. BIONIC WAVELET TRANSFORM OPTIMIZATION FOR 

ECG ANALYSIS 
 

From the definition of BWT there is a major difference in 
resolution of time-frequency span of analyzing windows. In 
fact in the WT, for a fixed mother function, all the windows 
in a certain scale along the t-axis are fixed and the window 
size of the WT (see the dotted windows) varies with the 
change of analyzing frequency. However, both the time and 
frequency resolutions can be different in the BWT even in 
a certain scale. The adjustment of the BWT resolution in 
the same scale is controlled by T-function, which is related 
to the signal instantaneous amplitude and its first-order 
differential [2]. 
Fig. 2 shows the time frequency representation for the ECG 
shown in Fig.1 with both WT and BWT. Notice the 
smoothing in the BWT representation which is the direct 
result of windows changes over certain scales. 
It only remains to set the BWT parameters efficiently so 
that it can decompose the signal into finite number of 
scales and after by, determine the most energetic ones and 
choose a global or local threshold. In order to optimize the 
BWT parameters we have used a semi-optimal method 
considering both analytic and morphological aspects of the 
analyzed signal. As we are considering ECG signal, we 
should be aware of its variability. 
May be the most important feature for an ECG signal is the 
frequency range in which its main components occur. 
Although there are some other components like VLPs, we 
have focused our interest on P, Q, R, S and T. The resulting 
frequency range is up to 100 Hz. 
Let f0 be the initial center frequency of the mother wavelet. 
In [2] it has a value equal to 15165.4 Hz and as the scale 
goes higher and higher, the center frequency will decrease 
in the following way: 
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For ECG we do not need such high f0, so we optimized it 
simply by running the program for different values of f0 
and then minimizing the gradient of error variance by 
comparing the results-numerically and morphologically- 
with each other. It has been found that if the center 
frequency lies in the range of 360 to 500 Hz there would be 
no much distortion on the analyzed ECG. Here we have 
chosen f0=400 which yields satisfactory results.  
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Fig. 2. Time-frequency representation of the ECG signal in Fig. 1: (a) WT 

(b) BWT. 
 

In our method q is not a global constant but for each signal 
and for each time-frequency window it has a constant 
value. Other parameters are exactly the same as what was 
stated in [7] which used BWT for speech enhancement and 
denoising. These are 8.0,45~,87.0~

21 === sBWTGG .  
Finally, the calculation step is determined due to the 
sampling frequency. If we let fs be the sampling frequency 
then the step will be sf/1=∆τ . 

 
V. DENOISING TECHNIQUE 

 
After BWT optimization, the denoising technique 
illustrated in Fig. 3 is used to reduce the amount of noise 
contamination in the ECG signal. In implementation, BWT 
coefficients can be easily calculated based on 
corresponding WT coefficients by: 
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where K is a factor depending on T [2]. Especially, for the 
real Morlet function 2

0 )/()( Tteth −= , which is used as the 
mother function in our experiments, where , K is equal to 
[4] : 
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Here we have used Donoho’s proposed approach for 
denoising including two major categories, hard 
thresholding and soft thresholding. The choosing of the 
threshold value can be determined in many ways. Donoho 
derived the following formula based on white Gaussian 
noise assumption: 
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where thr is the threshold value, N is the length of the noisy 
signal, and σ =AMFS/0.6745, with AMFS denoting the 
absolute median estimated on the first scale of the bionic 
wavelet coefficients. We have used the following threshold 
which is a new modification of (12). Let Tfs(i) be the value 
of T-function in the i-th step of computing. The threshold is 
formulated as: 
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Fig.3. The block diagram of the bionic wavelet transform denoising 

technique. 
 
In fact a weighted average of T-function values in the first 
scale of BWT is added to (12) to get better results. After 
thresholding, the coefficients of BWT are divided by K 
factor and by taking the inverse WT transform, the 
denoised version of signal will be reconstructed. 
 

VI. DISCUSSION AND CONCLUSION 
 
To show that BWT is appropriate for ECG denoising we 
have used two types of ECG signals, both simulated and 
real ones. We used the MIT-BIH database as the reference 
for our real signals. The signals were decomposed using 
BWT up to 30 scales. We have used Morlet wavelet as our 
wavelet function and its support length is chosen as [-4,4], 
and 2.5π is chosen as its oscillatory frequency [7]. 
As mentioned before, for denoising two kinds of 
thresholding methods, hard and soft, were applied. Besides, 
for easier comparison we have applied the WT-based 
denoising with Daubechies wavelets to each signal. Fig. 4 
shows some typical results. One can see that in many cases, 
hard thresholded signal is more similar to the original ECG, 
which is due to the intrinsic smoothness in BWT. But there 
are cases like Fig. (4) in which soft thresholded signal has 
better quality. So it is thoroughly case dependent.  
Simulation results provide supportive evidence to claim 
that BWT has some advantages over the traditional WT. 
First, BWT has higher sensitivity so it is more probable for 
WT to have little single-noise-samples remained (refer to 
Fig. 4(a)). Second, BWT has a smoothing property with 
respect to its resolution variation over the time-frequency 
plane, and this is exactly what we are seeking in many 
denoising techniques, especially true for real ECGs (see 
Fig. 4(b)). And finally with the appropriate choices for the 
level of decomposition, i.e. number of scales, and the 
center frequency, removing other interferences such as 
powerline or 60 Hz interference is a direct task. To clarify 
this, we have chosen a real ECG signal (signal 228 of MIT-
BIH-Fig. 4(c)) and we have denoised it with both WT and 
BWT. It is obvious that in WT-based denoised signal (see 
the second signal) the 60 Hz interference still exists, but in 
the denoised signal with BWT (see the last signal) baseline 
wander is completely removed. Of course the penalty is a 
little loss of smoothness. 
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For evaluating the performance of the proposed BWT we 
have used the SNR improvement measure by the means of 
the expression: 
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where x denotes the clean ECG, xd is the denoised signal 
and xn represents the noisy ECG signal. Fig 5 compares the 
improvement values between WT and BWT. For 
evaluation, both hard and soft thresholding are considered. 
One can see that in lower input SNRs, soft WT has a better 
performance. But as the input SNR is increased the BWT 
improvement increases until in SNRs higher than 8dB, soft 
BWT passes the WT performance. Besides, for lower 
SNRs, hard BWT has better performance than hard WT. 
In summary, the BWT is adapted for the ECG signal, and a 
new threshold selection rule is proposed which leads to 
results comparable to those of WT. The advantages of 
BWT-based ECG denoising are summarized below: 

1) BWT denoised signal is a smoothed version. 
2) Single artifacts do no longer exist. 
3) Interference removal is achieved by properly 

adjusting the center frequency of mother function 
and the number of decomposition levels. 

4) For higher input SNR more improvement is 
obtained. 
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Fig. 4. ECG denoising examples with WT and BWT : (a) Simulated ECG 
(b) real ECG (c) real ECG with baseline wander. In each figure, the first 
one is the noisy signal, the second one is the denoised signal with WT – 
hard thresholding and the last two ones are the denoised signal with BWT- 
hard and soft thresholding. 
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Fig. 5. Improvement vs. input SNR for WT and BWT denoising. 
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