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Abstract- Photoplethysmography has been recently studied as 

a non-invasive indicator of circulatory and respiratory function.  
In this study, photoplethysmographic (PPG) data were recorded 
from patients under the influence of anesthesia, but not intubated.  
Both time and frequency domain features were extracted from 
the PPG and used as inputs to a neural network classifier.  This 
classifier considers inter-subject variability so that it generalizes 
well to a large population.  This classifier provided 86.1% 
accuracy to classify segments as being times of ‘obstructed’ vs. 
‘normal’ airways status.   
 

INTRODUCTION 
 

The pulse oximeter is a standard tool used in operating 
rooms around the world to detect blood oxygen saturation.  
Much more information can be obtained, however, through the 
study and exploitation of its photoplethysmogram (PPG) 
output.  The PPG is a pulsatile waveform that provides an 
indirect measurement of blood volume under the sensor [1]. 
The temporal behavior of this signal is influenced both by the 
cardiac and respiratory cycles. Respiratory induced variations 
(RIV) in PPG amplitude have been documented and 
associated with airway obstruction, hypovolemia, and 
hypotension [2-4].   

Anesthetized patients with undiagnosed obstructive sleep 
apnea are at risk of sudden respiratory failure after receiving 
anesthesia because of repressed respiratory and hemodynamic 
responses [5].  Even those patients without airway disorders 
may be at some risk.  While a patient is being operated on 
under the influence of anesthetics, many factors can initiate 
complications in airway management, including neurological 
and physical.  The most prominent neurological cause is the 
fact that the body is in a drug-induced state.  Muscle relaxants 
in particular can disrupt respiration, and the physician cannot 
fully predict the extent to which this medication will affect an 
individual [6, 7].  In addition, mechanical factors, such as 
body position can interrupt normal function [8].  The body is 
in a markedly vulnerable state post-operatively due to the 
trauma involved in surgical operations [1], which can leave a 
patient particularly susceptible to airway obstructions.   

The goal of this study is to use advanced signal 
processing techniques to develop an algorithm.  This process 
will be used for the analysis of the PPG in order to the 
extraction of useful information regarding airway status.  In 
particular, these techniques will utilize a forehead reflectance 
pulse oximeter to identify and distinguish between normal 

breathing events and obstructed airway events on patients 
under anesthesia.  Such techniques have already proven 
successful for networks trained specifically for certain 
individuals [9].  This study aims to take into account inter-
subject variability so that one network may be trained with 
data from a variety of subjects and can successfully classify 
airway status for any patient.    
   

METHODS 
 

Patients were recruited with IRB approval from the 
surgical center at Dartmouth Hitchcock Medical Center.  Data 
from a NoninTM reflectance pulse-oximeter placed on the 
forehead were gathered in the operating room after extubation, 
but before transfer to the post anesthesia care unit (PACU).  
This period covered the time after the body experienced the 
trauma of surgery, when the patient was under the anesthetics, 
but was expected to be breathing independent of a mechanical 
respirator.  The gold standard used to identify obstruction 
events involved a combination of signal from a pair of 
respiratory straps located on the thorax and abdomen, a CO2 
end tidal volume indicator, and an annotated collection of 
observations made by a trained anesthesiologist at the time of 
data recording. 

PPG data were segmented with the aid of these 
supplemental sensors, and segments were grouped as ‘normal’ 
or ‘obstructed’ airway status.  Signal analysis was performed 
on a MATLABTM platform.  Using a peak finding algorithm, 
local peaks of the PPG were identified and classified as 
occurring during one of these ‘normal’ or ‘obstructed’ periods.  
Both time and frequency domain features were then extracted 
for each segment.  Time domain features were calculated from 
each pulse of the raw PPG, including peak and valley 
amplitudes, beat-to-beat interval time, rise time, fall time, and 
area under each peak, as illustrated in Figure 1a.  Values for 
features in the time domain were averaged over all of the 
peaks in one segment.  Additional time domain features 
included the difference between the highest and lowest peak as 
well as the difference between the highest and lowest valley 
during a segment.  These differences gave an indication of the 
RIV strength during each segment.  In order to extract 
frequency domain features, the PPG signals were first 
transformed to the frequency domain using parametric 
autoregressive (AR) techniques that employed the Burg 
algorithm.  The following features were then extracted: 



normalized low frequency power (LF/LF+HF) and the 
frequency of the LF peak (f(LF)), as shown in Figure 1b.  For 
this purpose, low frequency was defined as the  interval 0.2 Hz 
to 1.0 Hz to give and indication of respiration and high 
frequency was defined as the interval 1.0Hz to 2.0 Hz to give 
an indication of circulation [10]. 

The time domain features have been shown to be accurate 
indicators of respiratory function [11] as well as airway 
obstructions in patients with chronic pulmonary disease [12].  
The two frequency features give an indication of respiratory 
effort and function as compared to effort and function of the 

circulatory system.  Once these features were calculated, 
values were averaged over all peaks in a segment to obtain one 
set of 8 features per segment.   

These values provided the inputs to a neural network 
classifier.  Due to the nonlinearity of biological systems, a 4-
layer, feed-forward, backpropagation network was built [11, 
13], as illustrated in Figure 2.  The first layer consisted of the 
10 input features, the second layer increased the dimension 
space to 20 neurons, the third layer contained 10 neurons, and 
1 of 2 outputs were given, which identified the class of the 
segment as ‘normal’ or ‘obstructed’.   

 

a. b.  
 

Figure 1.  Time (a.) and frequency (b.) domain features extracted from each peak of the pulse oximeter waveform.  Time domain features labeled 
include the beat to beat interval (BB) in seconds, the height of the peak (P) and valley (V) of each pulse, the rise time (RT) and fall time (FT) of each 

pulse in seconds, and the area under the curve for each pulse (AUC).  Frequency domain features were defined by the low frequency band (LF) and the 
high frequency band (HF) where f(LF) denotes the frequency at which power peaked in the LF range. 

 
 

 

 
Figure 2.  Setup for backpropagation neural network.  The input layer consisted of 8 features, two hidden 

layers had 20 and 10 nodes, respectively, and the output indicated either normal or obstruction. 
 

 

 

h1 

h2 

h10 

 

input 
layer 

hidden
layer 2

oouuttppuutt  
llaayyeerr  

hidden
layer 1

f1 

f2 

f8 

h1 

h2 

h20 

normal 

P 

V 

BB 

RT 
FT 

Time 

AUC 

PPG 

obstruction 



 
 

After the data were normalized on a scale from -1.0 to 
1.0, the network was trained and tested on a subject by subject 
basis in order to reduce the effects of inter-subject variability.  
Half of the segments from each subject were used to train the 
network and the remaining half were used to test its 
performance.   

The performance of each network was measured in terms 
of how well each segment in the ‘test’ group was classified.  
Sensitivity, specificity, and accuracy of the networks were 
calculated for each subject trial and used as performance 
metrics—sensitivity being the correct identification of an 
obstruction event, specificity being the correct identification 
of a normal event, and accuracy being the correct  
classification in general.  Due to the random assignment of 
weights, one network may perform differently depending on 
the initial weight assignment at the start of the training 
process.  Therefore, the same network was trained and tested 
five times to obtain an average performance index.   

 
RESULTS 

 
In total, successful data were gathered from 10 subjects 

(10 subjects did not experience any obstructions post-
operatively).  An example of the raw PPG from a subject that 
was breathing normally then obstructed is shown in Figure 3.  
A clear distinction is seen during the transition from one event 
to the next. 

The minimum number of 5 second segments for any one 
subject was 18; therefore, in order to equally represent each 
subject in training, 18 segments from each were used.  In 
addition, an attempt was made to have equal representation of 
obstruction events and normal breathing events.  Therefore, 
when possible, these 18 segments included 9 of normal 
breathing and 9 during obstruction events.  In total, 180 
segments were used, 118 of normal breathing, 62 of 
obstruction events. 

Using a leave one out method of training, the neural 
network classified with an average sensitivity of 72.9%, a 
specificity of 93.0%, a positive predictive value of 84.7%, a 
negative predictive value of 86.8%, and an overall accuracy of 
86.1%.     

 
DISCUSSION 

 
These results indicate that the time and frequency features  

of the PPG are capable of distinguishing between normal and 
obstructed airway events.  Figure 3 illustrates some clear 
changes between an ‘obstruction’ segment and an immediately 
preceding ‘normal’ segment.  During normal breathing, a clear 
low frequency respiratory induced variation (RIV) is present, 
which virtually disappears once the airway is obstructed.  In 
addition the pulse amplitude, the change in amplitude from 
valley to peak in the time domain shows a clear increase 
during the obstruction.  The physiological implications of 

these waveform changes have yet to be investigated, but it is 
clear that features from both the time and the frequency  

 
Figure 3.  Raw PPG from one subject beginning during normal 

breathing and transitioning to an obstruction event. 
 
 
 

 
domain are necessary to capture the differences in airway 
status. 

The lower sensitivity performance of the neural network 
classifier may be attributed to the fact that considerably more 
of the segments were ‘normal’ events and fewer were 
‘obstructed’ events.  This allowed the network to better train 
for the ‘normal’ cases, resulting in a better classification for 
these segments when compared with segments from   
‘obstructed’ events.  Overall, the combination of these features 
have performed well at classifying normal and obstructed 
airway functions.  The encouraging positive predictive value 
verifies that when a segment is identified as an obstruction it is 
done with great confidence.  Similarly, the negative predictive 
value indicates only a 13.2% rate of false alarms as compared 
to a 28 % false alarm rate of the accepted standard of thoracic 
impedance bands.   

The ability of neural networks to capture nonlinear 
patterns among a collection of inputs allows them to be 
appropriate classifiers for such complex physiological 
systems.  The performance values verify that this particular 
network has potential to identify airway status.  
Improvements, however, must still be made.   
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Immediate focus will be placed on increasing the number 
of training vectors in the ‘obstruction’ category.  This quantity 
balancing should improve the networks ability to recognize 
segments in each category, therefore, increasing sensitivity 
and accuracy.  In addition, a more in depth study of each of 
the features will be conducted.  This investigation will provide 
insight into which features are contributing to most of the 
variability, or contributing mostly to the classification, and 
may be completed using a principal components analysis.  
Further studies will also increase the data set.  Instead of just 
focusing on post-operative patients, we will also consider pre-
operative and peri-operative patients who are under 
anesthesia, but maintaining spontaneous breathing.  This 
increase in data will allow us to determine the influence of 
surgical trauma on the ability of the PPG to identify airway 
status. 
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