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Abstract— This paper discusses machine learning methods
and their application to Brain-Computer Interfacing. A partic-
ular focus is placed on linear classification methods which can
be applied in the BCI context. Finally, we provide an overview
of the Berlin-Brain Computer Interface (BBCI).

. INTRODUCTION

Brain-Computer Interfacing is an interesting, active and
highly interdisciplinary research topic ([2], [3], [4], [9]) a
the interface between medicine, psychology, neurology, re-
habilitation engineering, man-machine interaction, machine
learning and signal processing. A BCI could, e.g., dlow a
paralyzed patient to convey her/his intentions to a computer
application. From the perspective of man-machineinteraction
research, the communication channel from a healthy human's
brain to a computer has not yet been subject to intensive
exploration, however it has potentia, e.g., to speed up
reaction times, cf. [6] or to supply a better understanding
of a human operator’'s mental states.

Classical BCI technology has been mainly relying on the
adaptability of the human brain to biofeedback, i.e., a subject
learns the menta states required to be understood by the
machines, an endeavour that can take months until it reliably
works [7], [8].

The Berlin Brain-Computer Interface (BBCI) pursues an-
other objective in this respect, i.e., to impose the main load
of the learning task on the 'learning machine', which also
holds the potential of adapting to specific tasks and changing
environments given that suitable machine learning (e.g. [9])
and adaptive signal processing (e.g. [10]) agorithms are
used. Short training times, however, imply the challenge
that only few data samples are available for learning to
characterize the individua brain states to be distinguished.
In particular when dealing with few samples of data (trias
of the training session) in a high-dimensional feature space
(multi-channel EEG, typically severa features per channel),
overfitting needs to be avoided. It isin this high dimensional
— small sample statistics scenario where modern machine
learning can prove its strength.

The studies were partly supported by the Bundesministerium fur Bildung
und Forschung (BMBF), FKZ 01IBB02A and FKZ 01IBB02B and the
PASCAL Network of Excellence, EU # 506778. This paper is based on
excerpts of [1].

The present paper introduces basic concepts of linear
classification (for a discussion of nonlinear methods in the
context of BCI, see [11], [9], [12], [13], [14]). Finally,
we briefly describe our BBCI activities where some of the
discussed machine learning ideas come to an application and
conclude.

Il. LINEAR METHODS FOR CLASSIFICATION

In BCI research it is very common to use linear classifiers,
but although linear classification aready uses a very simple
model, things can still go terribly wrong if the underlying
assumptions do not hold, e.g. in the presence of outliers or
strong noise which are situations very typically encountered
in BCI data analysis. We will discuss these pitfalls and point
out ways around them.

Let us first fix the notation and introduce the linear
hyperplane classification model upon which we will rely
mostly in the following (cf. Fig. 1, see e.g. [15]). In a BCI
set-up we measure k= 1...K samples xi, where x are some
appropriate feature vectors in n dimensiona space. In the
training data we have a class label, eg. yx € {—1,+1} for
each sample point xi. To obtain alinear hyperplane classifier

y =sign (WTX—I— b) (1)

we need to estimate the normal vector of the hyperplane w
and athreshold b from the training data by some optimization
technique [15]. On unseen data x, i.e. in a BCl feedback ses-
sion we compute the projection of the new data sample onto
the direction of the normal w via Eq.(1), thus determining
what class label y should be given to x according to our
linear model.

A. Optimal linear classification:

Fisher’s discriminant

large margins versus

Linear methods assume a linear separability of the data.
We will see in the following that the optimal separating
hyperplane from last section maximizes the minimal margin
(minmax). In contrast, Fisher's discriminant maximizes the
average margin, i.e., the margin between the class means.



Fig. 1. Linear classifier and margins. A linear classifier is defined by a
hyperplane's normal vector w and an offset b, i.e. the decision boundary is
{x|wTx+b =0} (thick line). Each of the two halfspaces defined by this
hyperplane corresponds to one class, i.e. f(x) =sign(w' x+b). The margin
of a linear classifier is the minima distance of any training point to the
hyperplane. In this case it is the distance between the dotted lines and the
thick line. From [9].

1) Largemargin classification: For linearly separable data
there is a vast number of possibilities to determine (w,b),
that all classify correctly on the training set, however that
vary in quality on the unseen data (test set). An advantage of
the simple hyperplane classifier (in canonical form cf. [16])
isthat literature (see e.g. [15], [16]) tells us how to select the
optimal classifier w for unseen data: it is the classifier with
the largest margin p = 1/||w||3, i.e. of minimal (euclidean)
norm ||w||2 [16] (see aso Fig. 1). Linear Support Vector
Machines (SVMys) redlize the large margin by determining
the normal vector w according to

min Ya|wl|j3 + S/ ||&]l.  subject to ©
w,D0,
Yk(W X +b) >1-& and
& >0 fork=1,...,K,

where |-||1 denotes the ¢q-norm: ||&|1 = 3 |&«|. Here the
elements of vector & are dack variables and parameter C
controls the size of the margin vs. the complexity of the
separation. While the user has not to care about the slack
variables, it is essential to select an approppriate value for
the free parameter C for each specific data set. The process
of choosing C is called model selection, see eg. [9]. One
particular strength of SVMs is that they can be turned in
nonlinear classifiers in an elegant and effective way (see
e.g. [16], [9], [12]).

2) Fisher’s discriminant: Fisher’s discriminant computes
the projection w differently. Under the restrictive assump-
tion that the class distributions are (identically distributed)
Gaussians of equal covariance, it can be shown to be Bayes
optimal. The separability of the data is measured by two
guantities: How far are the projected class means apart
(should be large) and how bhig is the variance of the data
in this direction (should be small). This can be achieved by
maximizing the so-called Rayleigh coefficient of between
and within class variance with respect to w [17], [18].
The dlightly stronger assumptions have been fulfilled in
severa of our BCl experiments e.g. in [13], [14]. When the
optimization to obtain (regularized) Fisher's discriminant is
formulated as a mathematical programm, cf. [19], [9], [20],
it resembles the SVM:

mt;g Y2|\w|3 + S/x[|&[Z  subject to
w,Db,

YW'xg+b)=1-¢, fork=1... K.

B. Some remarks about regularization and non-robust clas-
sifiers

Linear classifiers are generally more robust than their non-
linear counterparts, since they have only limited flexibility
(less free parameters to tune) and are thus less prone to
overfitting. Note however that in the presence of strong noise
and outliers even linear systems can fail. In the cartoon of
Fig.2 one can clearly observe that one outlier or strong
noise event can change the decision surface drastically,
if the influence of single data points on learning is not
limited. Although this effect can yield strongly decreased
classification results for linear learning machines, it can be
even more devastating for nonlinear methods. A more formal
way to control one's mistrust in the available training data,
is to use regularization (e.g. [21], [22], [15]). Regularization
helpsto limit (&) the influence of outliers or strong noise (e.g.
to avoid Fig.2 middle), (b) the complexity of the classifier
(e.g. to avoid Fig.2 right) and (c) the raggedness of the
decision surface (e.g. to avoid Fig.2 right). No matter whether
linear or nonlinear methods are used, one should always
regularize, — in particular for BCl datal

Fig. 2. The problem of finding a maximum margin “hyper-plane” on
reliable data (left), data with an outlier (middle) and with a mislabeled
pattern (right). The solid line shows the resulting decision line, whereas
the dashed line marks the margin area. In the middle and on the right the
origina decision line is plotted with dots. Illustrated is the noise sensitivity:
only one strong noise/outlier pattern can spoil the whole estimation of the
decision line. From [23].

I1l. THE BERLIN BRAIN-COMPUTER INTERFACE

The Berlin Brain-Computer Interface is driven by the idea
to shift the main burden of the learning task from the human
subject to the computer under the motto 'let the machines
learn’. To this end, the machine learning methods presented
in the previous sections are applied to EEG data from
selected BBCI paradigms: selfpaced [13], [14] and imagined
[24], [25], [26] experiments.

A. Sdf-paced Finger Tapping Experiments

In preparation of motor tasks, a negative readiness poten-
tial precedes the actua execution. Using multi-channel EEG
recordings it has been demonstrated that several brain areas
contribute to this negative shift (cf. [27], [28]). In unilateral
finger or hand movements the negative shift is mainly
focussed on the frontal lobe in the area of the corresponding
motor cortex, i.e., contralateral to the performing hand. Based
on the laterality of the pre-movement potentialsit is possible
to discriminate multi-channel EEG recordings of upcoming
left from right hand movements. Fig. 3 shows the lateralized
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Fig. 3. The scalp plots show the topography of the electrica potentials
prior to keypress with the |eft resp. right index finger. The plot in the middle
depicts the event-related potential (ERP) for left (thin line) vs. right (thick
line) index finger in the time interval -1000 to -500 ms relative to keypress
a electrode position CCP3, which is marked by a bigger cross in the scalp
plots. The contralateral negativation (lateralized readiness potential, LRP)
is clearly observable. Approx. 260 trials per class have been averaged.

readiness potential during a‘self-paced’ experiment, asit can
be revealed here by averaging over 260 trials in one subject.

In the ‘self-paced’ experiments, subjects were sitting in a
normal chair with fingers resting in the typing position at the
computer keyboard. In a deliberate order and on their own
free will (but instructed to keep a pace of approximately 2
seconds), they were pressing keys with their index and little
fingers.

EEG data was recorded with 27 up to 120 electrodes,
arranged in the positions of the extended 10-20 system,
referenced to nasion and sampled at 1000Hz. The data were
downsampled to 100Hz for further offline analyses. Surface
EMG at both forearms was recorded to determine EMG
onset. In addition, horizontal and vertical electrooculograms
(EOG) were recorded to check for correlated eye movements.

In [6], it has been demonstrated that when analyzing
LRP data offline with the methods detailed in the previous
sections, classification accuracies of more than 90% can be
reached at 110ms before the keypress, i.e. a point in time
where classification on EMG is still at chance level. These
findings suggest that it is possibleto useaBCl in timecritical
applications for an early classification and a rapid response.

Table | shows the classification results for one subject
when comparing different machine learning methods. Clearly
regularization and careful model selection are mandatory
which can, eg., be seen by comparing LDA and RLDA.
Of course, regularization is of more importance the higher
the dimensionality of features is. The reason of the very bad
performance of k-NN is that the underlying Euclidean metric

TABLE |
TEST SET ERROR (+ STD) FOR CLASSIFICATION AT 110 MS BEFORE
KEY STROKE; >MC< REFERS TO THE 56 CHANNEL S OVER (SENSORI)
MOTOR CORTEX, >ALL< REFERSTO ALL 105 CHANNELS. THE
ALGORITHMSIN QUESTION ARE LINEAR DISCRIMINANT ANALYSIS
(LDA), REGULARIZED LINEAR DISCRIMINANT ANALYSIS(RLDA),
LINEAR PROGRAMMING MACHINE (LPM), SUPPORT VECTOR
MACHINE WITH GAUSSIAN RBF KERNEL (SVMRBF) AND k-NEAREST
NEIGHBOR (k-NN).

channels | LDA RLDA LPM  SVMrbf k-NN
al 16.9+1.3 8.4+06 7.7+t06 8.6+06 28.4+09
mc 9.3+06 6.3+05 7.4+07 6.7+07 22.0+09

left-ref [8 14] Hz right-ref [8 14] Hz

CCP5

Fig. 4. This scalp plots show the topography of the band power in the
frequency band 8-14 Hz relative to areference period. The plot in the middle
shows ERD curves (temporal evolution of band power) at channel CCP5
(mark by a bigger cross in the scalp plots) for left (thin line) and right
(thick line) hand motor imagery. The contralateral attenuation of the u-
rhythm during motor imagery is clearly observable. For details on ERD,
see [30].

is not appropriate for the bad signal-to-noise ratio found in
EEG triads. For further details refer to [13], [14]. Note that
the accuracy of 90% can be maintained in recent realtime
feedback experiments [29]. Here, as no trigger information
is available beforehand, the classification decision is split
into one classifier that decides whether a movement is being
prepared and a second classifier that decides between left
and right movement to come.

B. Motor Imagery Experiments

During imagination of a movement, a lateralized atten-
uation of the u- and/or central B-rhythm can be observed
localized in the corresponding motor and somatosensory
cortex. Besides a usual spectral analysis, this effect can be
visualized by plotting event-related desynchronization (ERD)
curves [30] which show the temporal evolution of the band-
power in a specified frequency band. A typical averaged ERD
is shown in Fig. 4.

We performed experiments with 6 healthy subjects per-
forming motor imagery. The subjects were sitting comfort-
ably in achair with their armsin arelaxed position on an arm
rest. Two different sessions of data collection were provided:
In both a target “L”, “R” and “F" (for left, right hand and
foot movement) is presented for the duration of 3.5 seconds
to the subject on a computer screen. In the first session type
this is done by visualizing the letter on the middle of the
screen. In the second session type the left, right or lower
triangle of amoving gray rhomb is colored red. For the whole
length of this period, the subjects were instructed to imagine
a sensorimotor sensation/movement in left hand, right hand
resp. one foot. After stimulus presentation, the screen was
blank for 1.5 to 2 seconds. In this manner, 35 trials per class
per session were recorded. After 25 trials, there was a short
break for relaxation. Four sessions (two of each training type)
were performed. EEG data was recorded with 128 electrodes
together with EMG from both arms and the involved foot,
and EOG as described above.

An offline machine learning analysis of the “imagined”-
experiments yields again high classification rates (up to
98.9% with the feature combination algorithm PROB [25],
[24]), which predicts the feasibility of this paradigm for
online feedback situations (see also [26]). In fact, our re-
cent online experiments have confirmed this prediction by



showing high bitrates for several subjects. These subjects
were untrained and had to play video games like 'brain
pong’, 'basket’ (a spelling task) and ’controlled 1-D cursor
movement’ [31]. Depending on the 'game’ scenario the best
subjects could achieve information transfer rates of up to
37 Bitgmin. A detailed description of this on-line feedback
study is given in [32].

C. Hex-O-Spell Application

The major challenge in designing a BCI text input system
like the novel “Hex-o-Spell” is to map the small number
of detectable mental states into a high number of symbols
(26 letters plus punctuation characters) while accounting for
the low signal-to-noise ratio in the control signal. Fig. 5
shows how this problem is solved in the Hex-0-Spell system:
using two different mental states, the BCI subject controlsthe
movement of an arrow in the middle of the circle. Adjoining
to this circle, six hexagons are located which contain groups
of letters and symbols. By imagining left hand movement,
the subject can turn the arrow clockwise at constant speed.
Once the arrow points into the direction of the hexagon
which contains the desired letter, an imagined foot movement
increases the size of the arrow. If the arrow touches one of
the hexagons, this field is selected and all other hexagons are
cleared. The letters of the selected hexagon are distributed
over the other fields, and the arrow can once more be
used to select a single letter via turning and extending. At
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Fig. 5. The mental typewriter “Hex-0-Spell”. The two states of the BCI
system control rotation and extension of the arrow. After selecting a group
of letters, a single letter can be chosen by selecting the hexagonal field
containing the letter. See text for details.

BERLI

the CeBIT computer fair 2006 in Hannover, Germany, this
system was operated by two users in live demonstrations
on two consecutive days. Despite the long period of use
(starting at 9 AM, the subjects performed until 5 PM with
only a short break for lunch), the BBCI proved very robust
against external influences such as electric and acoustic noise
and the slowly deteriorating signal-to-noise ratio caused by
drying electrode gel. The typing speed for one subject was
between 2.3 and 5 letters/min for one subject and between
4.6 and 7.6 letters/min for the other subject. More details on
Hex-0-Spell can be found in [33], [34].

IV. CONCLUSION

After a brief review of genera linear machine learning
techniques, this paper demonstrated their application in the
context of real BCl-experiments. Using these techniques,
it can be seen that the paradigm shift away from subject

training to individualization and adaptation (' et the machines
learn’) of the signal processing and classification algorithm
to the specific brain 'under study’ holds the key to the
success of the BBCI. Only thisinterplay of machine learning
algorithms with specifically tailored feedback applications
enables even untrained subjects to use the BCI and therefore
dramatically enhances and broadens the spectrum of practical
applications in human-computer interfacing.

Acknowledgments: We thank our co-authors from previ-
ous publicationsfor letting us use the figures and joint results
[12], [9], [11], [24], [23].
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