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Abstract — Cortical neural networks are responsible for 

identification, recognition and classification of natural signals 
mediated by various sensory channels. These tasks are still too 
complex to be accomplished by state-of-the-art engineering 
systems. There is, therefore, a great deal of interest in the 
development of suitable biologically-motivated architectures 
which are based on a realistic model of generic neural 
ensembles. We present a computational architecture for 
classification of natural signals, such as physiological signals, 
based on the emergence of instant neural cliques and phase-
locked attractors in liquid architectures.  The emergence of 
instant neural cliques enables mapping of complex classes of 
signals onto specific spatio-temporal firing patterns. The 
convergence of neural cliques onto attractors, along phase-
locked pathways, reveals a new type dynamic behavior of 
neural ensembles, which lends itself to simple discrete-output 
computational systems. 

I. INTRODUCTION 

ortical networks are, perhaps, the most computationally-
powerful class of dynamical systems. Cortical networks 
process in real-time complex temporal inputs and 

capture complex structures and relationships in massive 
quantities of low precision, ambiguous, noisy data in rapidly 
varying environments. Such cortical networks differ in most 
of the fundamental aspects from computational systems and 
models used by conventional technologies. In particular, 
components of cortical networks, neurons and synapses, are 
very slow (ms. scale), multi-parallel, heterogeneous, highly 
recurrent and sparsely connected. It is obvious that the 
conventional computational paradigms, such as Turing-
machine or Hopfield-type attractor-neural-networks, are not 
applicable to such cortical-type systems.  

Early, well-known, theoretical investigation of 
computational properties of recurrent neural networks with 
limited dynamics [1], revealed fixed-point attractors and 
enabled computation of complex problems, such as the 
traveling salesman problem [2]. Theoretical studies [3] 
discovered that the number of Hopfield attractors (fixed-
point states) may be as large as the number of neurons (i.e. 
given a Hopfield network of N neurons, with an arbitrary 
matrix of connectivity W, the number of state vectors that 
can be made stable is upper-bounded by N). However, 
experimental results indicated that the number of attractors 
attainable with such networks may be too small for practical 

 
 

applications. Hopfield networks are composed of symmetric 
weights, and thus the dynamics of the system is limited. 
Since the activity of the elements always evolves to one of a 
set of stable states which is then kept forever, only fixed-
point attractors can emerge in the dynamics of the system.  

Recently, T. Natschläger, W. Maass, and H. Markram 
have developed the framework of Liquid State Machine 
(LSM), which is based on a more biologically realistic and 
dynamically rich model of spiking neural network [4]. LSM 

consists of a filter ML , implemented by a complex recurrent 
network of spiking neurons. It maps input streams 

0( )u t t�  onto static liquid-states 0( )x t , in a nonlinear 

manner. Then, memoryless function Mf  maps at any time 

0t   the liquid-states onto some target output. To generate 

this readout function, a layer of linear perceptrons is trained 
to find the required classes of equivalences in the liquid-
state space, dictated by the given task. Obviously, cortical 
modules are not composed of these two functionally 
different components – liquid-states generators and 
readouts.  However, by this simplification and by 
emphasizing that cortical networks, rather than individual 
neurons, should be viewed as basic computational units, the 
LSM computational framework suggests a radically 
different paradigm for neural computation. Moreover, the 
LSM framework enables the application of real cortical 
networks in real-world tasks by embodiment of cortical 
neural culture in artificial environments [5].  

Following the concept of LSM, liquid-state was extended 
to spatio-temporal firing structure in a limited time-window, 
called neural clique [6], [7]. In the sequel, we implement 
neural cliques for mapping classes of signals to specific 
firing patterns. We then present a recently revealed dynamic 
behavior of neural ensembles in form of limit-cycle phase-
locked attractors. This dynamics is sensitive to initial 
conditions injected into the network, and is computationally 
effective in mapping complex cliques onto discrete outputs. 
Finally, both concepts are implemented in a computational 
system and tested in voice recognition benchmark.  

II. NEURAL CLIQUES 

A computational model of generic neural microcircuits is 
inherently endowed with powerful and versatile information 
processing capabilities. We use a model similar to [8], 
composed of a 3-dimentional recurrent network of 300 
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Leaky-Integrate-and-Fire (LIF) neurons [9] with random 
connectivity of statistics similar to generic cortical 
microcircuit -- 20% of the neurons chosen to be inhibitory 
and 80% excitatory. The probability of interconnection 
depends on the distance between two neurons,  

2exp( ( , ) / ) ,C D i j �� �  (1) 

where � and C are  parameters that determine the average 
number of connections for a certain Euclidean distance D 
between neurons i and j. This connectivity characterization 
by primary local connections and a few longer connections 
is biologically realistic. Random, heterogeneous parameters 
of neural-microcircuit (NM) model fit cortical data [4]. 
Synaptic short-term plasticity of the NM is implemented by 
dynamic synapses in which the amplitude of each post-
synaptic current depends on the spike train that is impinging 
on the synapse [10], [11], and causes facilitation and 
depression processes. The model is implemented using 
CSIM simulator [8].  

The concept of “Cliques” within neural ensemble was 
presented in [12] and implemented in computational system 
of interaction between two neural ensembles and learning-
by-dispersion. Neural clique is a spatio-temporal structure 
determined by a firing-pattern of cluster of neurons. These 
spatio-temporal patterns are sensitive to input signals and 
are indicative of network states. The concept of “Synfire-
chains”, originally introduced by M. Abeles [13]  and 
recently confirmed in neural culture activity by R. Yuste and 
associates [14], [15], emphasizes the importance of 
correlated spatio-temporal firing patterns generated by 
neural ensembles and their relevance to connectivity 
characteristics. Synfire-chains highlight the importance of 
interrelated spatio-temporal firing patterns across a 
relatively wide range activity and of its relevance to 
neurobiological functions. However, there is a missing link 
towards understanding the code of spatio-temporal firing 
patterns in the context of task-dependent activity and 
perceptual elements. For this reason, we address the concept 
of functionally higher spatio-temporal patterns, produced by 
neural ensembles, "Cliques". A clique may be composed of 
coherent interrelated activity of several synfire-chains active 
in the same or even different brain loci and structures. As 
such as it does not directly depend on the connectivity 
characteristics of the firing/non-firing neurons. The meaning 
of the clique as a spatio-temporal cube of activity of finite 
temporal length [12] is determined by short-term dynamics 
of the neural ensemble. Synfire-chains serve as the carriers 
of cliques, whereas the latter are composed of subsets of 
neurons participating in the activities of several synfire-
chains.   

  Mapping onto cliques has different properties than the 
mapping onto liquid-states, applied in LSM framework. A 
clique has an important temporal structure within a limited 
time-window, characterized by short-term dynamics of the 
ensemble (~50ms in our model). Moreover, LSM framework 
is based on separation property, suggesting that injections of 

any two sufficiently different inputs ( )u � and ( )v �  will 
drive the liquid into sufficiently different liquid-states, 
represented by spatial constant vectors at a given time 0t  -- 

uX  and vX  [4]. In contrast to LSM, cliques perform a 

selectivity property, mapping an entire certain class of inputs 
onto the same clique. This property leads to computational 
capability of identification and classification of certain 
classes of natural signals. Moreover, natural signals 
processed by different sensory systems, may be mapped 
onto cliques by different neural ensembles. Then, 
convergence of different sensory sources towards a single 
clique is possible by mapping multiple cliques onto a higher-
level clique in subsequent layers. Specifically, we examine 
the emergence of cliques through interaction of two neural 
ensembles. As indicated in the framework of Fig. 1, the 
activities within the two ensembles are coupled by means of 
the cliques.  

 
 
Fig.1. Block diagram of the computational framework. Inputs from 2 classes 
are injected into first microcircuit, which maps them onto cliques. The 
output of first microcircuit (including the cliques) is injected as initial 
condition to the second microcircuit. Second microcircuit is driven by a 
driving stimulus to phased-locked-attractors according to the initial 
conditions it is received. The phased-locked-attractors are characterized by 
frequency (� ), and phase (� ). 

 
In this study we focus our exposition on the functional 

aspects of cliques. Mechanisms that enable generation and 
transformation of cliques through pipeline of neural 
ensembles are macro “liquid-currents” within neural 
ensembles [12]. We suggest that on the macro-level of 
neural ensemble, the discussed mapping is implemented by 
existing specific liquid-currents from the group of input-
neurons to the group of output-neurons, which in turn read 
out by the next layer of neural ensembles. To generate the 
appropriate subsets of cliques, a neural ensemble is required 
to be sensitive, in the process of cliques’ generation, to 
specific class of inputs, and insensitive to other inputs. 
Capturing of the intrinsic dimensions of the data in the 
context of a given computational task is characterized by 
redundancy [12]. 

The intensity of liquid-current (LCI) generated by a 
certain class of inputs k to a spike j, in imaginary spatio-
temporal layer l, over the subset of neurons identified by 
index i, is defined by the following recursive algorithm:  
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wherein, 0t is the time of the spike j,  and it  is the time of 

the spike i, in preceding imaginary spatio-temporal layer, l-
1. iw  is the strength of the synapse connecting neuron 

producing spike j and neuron producing spike i, and i�  is 

the delay of this synapse. The algorithm scans neuronal 
spikes at layer l-1, which have led to the spike of the neuron 
at the next layer, l. The concerned time window is equal to 
the time lapsed between the activation of the synapse and 
the firing of the spike j, wt precedes the time of spike j by 

10ms. The probability of spike i to lead to spike j is 
infinitely small. In other words, the LCI is defined by the 
tree of neurons along which the signal "back-propagates" 
from the target spike, j, to the input k. The LCI is normalized 
by the product of the maximal synaptic strength, maxw and 

the maximal number of synaptic connections per neuron, 

maxK . The LCI at the input layer, inputl , is set to 1. This 

determines in turn is the stopping condition of the recursive 
algorithm. Note that, the terminology of layers, depicted in 
Fig. 2, refers to neuronal spikes at different time steps for a 
certain input. The fact that the same neuron may receive 
input either from the external environment or from 
interneurons highlights the recurrent connectivity 
characteristics of the neural ensemble. Note that the 
definition of LCI is valid also for non-firing spikes, i.e. the 
absence of spike for a certain neuron at certain required 
time-window. Since cliques are spatio-temporal sequences 
of neuronal spikes, we define the strength of clique q for 
input k by, 

'
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where, n refers to the number of constraints on spikes 
expected by the environment or the subsequent neuronal 
ensemble, and m identifies accordingly the number of  
degrees of freedom within each constraint. Here we assume 
that there is no statistical dependency between the spikes, 
since spikes defining a clique are not connectivity-
dependent and may exist in different and far brain loci and 
structures. The strength of cliques, based on definition of 
LCI (2), refers to the immunity of the cliques, generated by 
neural ensemble, as a function of variations in the presented 
signals. Thus, for example, longer liquid-currents are less 
reliable, while parallel liquid-currents increase the immunity 
of the neural ensemble to variations in signal, and result in 
more stable cliques. 

III. PHASE-LOCKED ATTRACTORS 

So far, we discussed the mapping of complex classes of 
inputs onto spatio-temporal signatures by neural ensembles 
in form of cliques. These cliques are the code which 
propagates along the neural pathways, and leads to fusion of 
the information from multiple sources. In this section, we 
are concerned with the following issue – what kind of 
mechanism is responsible for translating complex spatio-

temporal cliques to simple discrete outputs, which can be 
read-out by static, non-adaptive and non-learning actuating 
system, such as some motor neural circuits. 

 
Fig. 2. Example of liquid-currents from a given input to a spike at the output 
layer. Spikes from input neurons, indicated by black arrows, may appear at 
several spatio-temporal layers since the injected input has temporal 
structure. Spikes from one layer can excite several next layers.  
  

Here we implemented another, functionally different, 
computational framework of cortical network's model, based 
on concepts adopted from dynamical-systems theory. 
Cortical networks are dissipative systems. Their fading 
memory property requires perpetual inputs for the network 
to maintain activity. Otherwise, the network relaxes to a 
single resting state. In this setup, cliques are injected to the 
second neural ensemble (Fig. 1) as initial conditions. Then, a 
periodic external input (driving stimulus) drives the network 
dynamics. Three types of behavior are possible: (Type-I) - 
network dynamics does not converge to a periodic steady-
state. (Type-II) -  all initial conditions relax to a single 
steady state, no matter how far they are from each other. 
(Type III) – the network reaches several different periodic 
steady-states which are highly dependent on, and sensitive 
to, the initial conditions (cliques).  

 

 
Fig. 3. Possible network dynamics vs. different parameters and its 
scattering for two different networks. Driving stimulus frequency is 
shown in x-axis and network connectivity-radius in y-axis. Black 
areas depict dynamics with a single steady state for all initial 
conditions; white areas depict dynamics in which no convergence 
to a periodic steady-state has occurred; gray areas are intermediate 
states in which the network converged to discrete number steady-
states dependent on the initial-conditions. 



 
 

 

The systems characterized by Type-II dynamics do not 
posses the selectivity property, since all initial conditions 
converge to the same steady state. Thus, systems with this 
type of dynamics can not be used for computational 
purposes. Systems with Type-I dynamics, which do not 
converge to a steady-state, have the selectivity property and 
therefore may be used for computational tasks. However, 
since no limit-cycle is obtained, information-extraction 
regarding the current network's state is very complicated, 
and requires a complex readout. Systems with Type-III 
dynamics are driven to limit-cycles, characterized by a 
certain frequency and phase (shown abstractly in Fig. 5). 
Since these limit-cycles are selective to classes of inputs 
injected as the initial conditions and easily detectable, they 
are the best candidate for definition of system’s output in 
classification computational tasks.  Dynamics of such a 
computational system as a function of specific system's 
parameters (driving stimulus frequency and the radius of 
network's connectivity) is shown in Fig. 3. As the figure 
implies, the values of system's parameters determine the 
type of network's dynamics. The computationally interesting 
areas which are represented by the limit-cycle dynamics tend 
to vary for different network realizations. Nevertheless, 
some consistency of dynamics in the space of system’s 
parameters can be indicated. It is clear that low connectivity 
and/or low frequency of the driving stimulus, yields Type-II 
dynamics, whereas, higher connectivity and high frequency 
of the driving stimulus lend itself to Type-I dynamics. In the 
transition between the two types of dynamics, there is a 
region characterized by Type-III dynamics, implying a 
certain tendency of the system to exhibit dynamical behavior 
which is on the verge of chaos in the space of its parameters.  

Revealing the computational principle of this model 
requires thorough understanding of all three types of 
dynamics. As a consequence of their non-linear nature with 
numerous degrees of freedom, cortical neural networks have 
a high tendency for chaotic behavior, as indicated by Type-
III behavior. The universality of chaos provides a general 
theory and offers a well-defined framework for analysis of 
all types of networks dynamics. However, here we focus on 
a limit-cycle behavior (Type-III), wherein a periodic 
external force entrains and synchronizes the system’s 
activity, and makes it computationally effective for 
classification tasks.  

Similarly to other types of dynamical neural networks 
(e.g. Hopfield type), the behavior of the proposed 
computational system is also characterized by attractors. The 
periodic driving-stimulus pushes the network into an 
attractor, determined by the periodicity of the driving 
stimulus and the initial condition. This facet of the 
dynamical behavior of this computational system is quite 
complex and will, therefore, be dealt with elsewhere in 
greater detail. However, the role played by the initial 
condition is fundamental to the understanding of the 
computational power exhibited by our system, and we 
would therefore like to discuss briefly some facts related to 
the role played by the initial condition. An important finding 
is that the same periodic driving-stimulus can map different 

initial conditions into different attractors, by entraining the 
network into sub-, or super-harmonic of the driving 
frequency (Fig. 4). More interesting, and important 
computationally, is the structure of the basins of attraction 
and the mapping of initial conditions into such basins. A 
basin of attraction is divided into several sub-basins, each 
being identified by a specific phase of the attractor's limit-
cycle, corresponding to a specific class of inputs. In other 
words, an attractor characteristic of our system exhibits 
much more complex and richer topology of its dynamics, in 
that it may be considered as a cluster of attractors 
characterized by the same limit-cycle with different phases 
(Fig. 5).  

 

 
Fig.4. Raster plot of microcircuit response. Shown starting from second 100 
of the simulation. The microcircuit is at phase-locked-attractor. Different 
colors indicate the response of the microcircuit for three different initial 
conditions.  

 
Thus, as far as neural-computation is concerned, the 

capacity of the proposed computational system exceeds by 
far the one realized by Hopfield-type dynamical neural 
networks [3].  

 

 
Fig.5. Left figure shows a schematic depiction of an attractor (which 
represents a frequency), with several possible points of entrance to the 
attractor (representing the phase). The right figure shows schematically 
several attractors (i.e. several frequencies), black dots indicate possible 
entrance points to each of the attractors.    
 

To test the computational power of the proposed system 
we selected speaker identification task as a benchmark for 
natural signal classification. The database includes 1-minute 
phone conversations of ten speakers, 30 conversations for 
train and 30 for test. The voice signals are pre-processed 



 
 

 

based on MFCC pre-processing [16] and are injected to the 
first neural ensemble. Then, an external frequency is applied 
to the second neural ensemble until it reaches its steady-
state. The specific dynamic attractor identified by its phase 
and frequency is associated with a certain speaker based on 
the training data-set. Based on the matches between the 
attractors and input signals in test data-set, the system 
performed the task with an error rate of 12%.      

IV. DISCUSSION 

Convergence processes drive neural ensemble into limit-
cycle attractors characterized by certain frequencies and 
phases. A new phenomenon of phased-locked limit-cycle 
attractor, with multiple entry phases, characteristic of 
dynamic neural network (and most likely other dynamic 
systems) was discovered in the course of this study. This 
new type of dynamic neural behavior can serve as a 
powerful computational paradigm and mechanism. Further, 
the generation of large number of attractors, which depend 
on the initial conditions imposed by the inputs on to the 
system, enables the mapping of inputs with complex 
temporal structure onto discrete simple outputs. The 
proposed computational system for classification of natural 
signals, exclusively composed of biologically-plausible 
components, provides also insight into the function of 
neurobiological processes and structures. We utilize the 
phase-splitted attractors for recognition and classification of 
several types of signals (patterns), each one being associated 
with a specific phase. 
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