
 
 

 

  

Abstract—Guided wave propagation has gained significant 
interest in the ultrasonic evaluation of bone. Previous 
computational and experimental studies are based on the 
theory describing guided wave propagation in a free two-
dimensional plate (Lamb wave theory). In this work, we modify 
the boundary conditions so as to take the effect of the overlying 
soft tissues into account. A two-dimensional model of a bone-
mimicking plate (density 1500Kg/m3, Young’s modulus 14GPa, 
cortical thickness 4mm) was developed. The fracture callus 
tissue was modeled as an inhomogeneous material consisting of 
six ossification regions with properties changing during the 
healing period. The bone was assumed immersed in blood 
(fluid-loaded boundary conditions). The ultrasound transmitter 
and receiver (1MHz) were placed on each side of the callus, 
equidistant from it at a 35mm in-between distance. First, we 
investigated the propagation velocity of the first arriving signal 
(FAS) using traditional time-domain analysis. Next, the velocity 
dispersion of the guided wave modes was represented in the 
time-frequency (t-f) domain of the signal. Characterization of 
the propagating guided modes was carried out by 
incorporating the theoretical leaky Lamb wave dispersion 
curves. Comparing with previous results obtained from free 
intact and healing plates, it was found that the surrounding soft 
tissues have a significant effect on the dispersion of guided 
waves. The effect was less pronounced on the FAS propagation 
velocity. However, leaky Lamb waves were again sensitive to 
the material and mechanical changes during the simulated 
healing process. In conclusion, the application of realistic 
boundary conditions provides an improved approach to 
interpreting clinical measurements. 

I. INTRODUCTION 
uantitative determination of bone mechanical 

properties is a crucial issue not only for the assessment 
of degenerative diseases such as osteoporosis, but also for 
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the objective evaluation of fracture healing. The so-called 
axial transmission technique has been developed to serve 
that purpose by measuring the ultrasound velocity of the 
waves propagating through the long axis of the bone. This 
technique allows for the evaluation of long bones like tibia 
and radius. A transmitter and a receiver are placed along the 
bone axis either in contact with the skin [1] or through 
implantation directly onto the bone surface [2,3]. The 
apparent velocity is specified by the transit time of the first 
arriving signal (FAS) at the receiver and the propagation 
distance. 

The correlation between the FAS velocity and the 
properties of bone, such as mineral density, cortical 
thickness and elastic modulus, has been clarified 
experimentally [4,5] and by computed simulations [6-9]. 
Clinical [10] and animal [2,3] research, as well as 
simulations of two-dimensional (2-D) bone models [11], 
aiming at the assessment of the fracture healing process, 
have indicated that the FAS velocity increases during the 
healing period. In addition, both experimental immersion 
techniques on acrylic plates and in vivo applications [12] 
have been carried out in order to elucidate the effect of the 
surrounding soft tissue and the width of the fracture gap on 
the FAS propagation velocity.  

However, the FAS wave corresponds to a “surface wave” 
when the wavelength is smaller than the thickness of the 
cortex, and therefore its velocity reflects only the properties 
of the cortex along a subsurface region. Conversely, when 
the wavelength of the transmitted wave is larger than the 
cortical thickness, the bone acts as a waveguide supporting 
the propagation of guided wave modes [13]. Guided waves 
have recently been regarded as a significant tool in the 
ultrasound evaluation of bone status since they are sensitive 
to both the mechanical and geometrical properties of the 
propagation medium. Computational studies on 2-D bone 
models [6,9] and experimental research [4,9,14,15] have 
been performed to investigate guided wave propagation by 
making use of the Lamb wave theory (the theory that 
describes guided waves in free 2-D plates) [13]. As opposed 
to the above mentioned studies which focused on 
osteoporosis, we recently demonstrated that guided waves 
can be also useful in monitoring the fracture healing process 
[1]. A free 2-D isotropic healing bone model was developed 
and the investigation of guided wave propagation was based 
on time-frequency (t-f) signal analysis. However, all the 
above-mentioned studies have neglected the effect of the 
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surrounding soft tissues on guided wave propagation. The 
soft tissues provide a leakage path for the ultrasonic energy 
giving rise to the so-called leaky wave modes. 

In this work, we extend our previous 2D computational 
study by taking into account more realistic conditions. The 
presence of the soft tissues is simulated by immersing the 
bone-mimicking plate in fluid. Also, the model of the 
healing bone is enhanced by considering the callus tissue as 
an inhomogeneous material consisting of six different 
ossification regions. Our main objective is to investigate the 
influence of the overlying soft tissue on the characteristics 
of guided wave propagation. In this respect, we perform two 
series of simulations. In the first (SeriesI), the bone is 
considered free, whereas in the second (SeriesII) the bone is 
assumed to be immersed in blood. We first investigate the 
difference in the FAS velocity between the two series of 
simulations. Then, we analyze the signals in the t-f domain 
to obtain represent the dispersion of the guided waves. 
Detection of the modes in the t-f domain is performed by 
superimposing theoretical dispersion curves computed (a) 
for the Lamb modes (SeriesI) and (b) for the leaky Lamb 
modes (SeriesII). By comparing the data obtained from the 
two series, we demonstrate that the surrounding soft tissues 
affect the dispersion of guided waves and are thus a 
significant parameter that must be included in the bone 
models.  

To our knowledge no previous work has reported on the 
use of leaky guided waves in the study of bone fracture 
healing.  

II. GUIDED WAVES IN A PLATE 
Wave propagation through bounded media results in 

multiple reflections of the waves at the boundaries and mode 
conversion occurs between longitudinal (compression) and 
shear (transverse) waves. As the waves propagate in the 
medium, superpositions cause the formation of wave packets 
which are called guided wave modes. Guided waves are 
dispersive, i.e. the velocity at which a wave mode 
propagates within a medium is a function of the frequency. 

In the case of a homogeneous isotropic elastic plate with 
traction-free upper and lower surfaces (the free plate 
problem), the guided waves are called plate modes or Lamb 
modes [13]. The Lamb modes are divided into symmetric 
modes (denoted as Sn, where n=0,1…) and anti-symmetric 
modes (denoted as An, n=0,1,…). The dispersion of Lamb 
modes is described by a transcendental equation known as 
the Rayleigh-Lamb frequency equation. The roots of the 
characteristic equation relate the group velocity of a mode to 
the frequency and are provided in the form of group velocity 
dispersion curves. 

When the plate is immersed in a fluid, the boundary 
conditions of the problem are modified to accommodate the 
fluid-loading conditions at the upper and lower surfaces of 
the plate. In this case, the modes are called leaky Lamb 
modes (denoted respectively as l-Sn and l-An, n=0,1,…) and 

their dispersion curves are derived from the (modified) 
frequency equation. Fig. 1 depicts the group velocity 
dispersion curves for a bone-mimicking plate in two cases: 
(a) free or (b) immersed in fluid (blood).  

III. MATERIALS AND METHODS 

A. Bone Model 
The cortical bone was assumed to be a linear elastic 

isotropic plate with Young’s modulus Ebone=14 GPa, as 
measured in a previous experimental animal study [2]. The 
Poisson’ ratio was vbone=0.37, which is a typical value for 
bone [6,7,9,11]. The bone was considered a homogeneous 
material with ρbone=1500 Kg/m3 [2]. The cortical thickness 
was 4 mm (which is close to some types of human long 
bones [6,9,11] ). The bulk longitudinal, Lc , and shear, Tc , 

  
velocities of the bone were calculated as [13]: 
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and were found 4063 m/s and 1846 m/s, respectively.  
 

    Model of Fracture Callus  
Based on a previous computational study [16], we 

modeled the fracture callus tissue as an inhomogeneous 
material consisting of six distinct ossification regions, 
denoted as I, II,…, VI (Fig. 2). The geometry of the callus 
was described by an endosteal and a periosteal region which 
are designed outside and inside the borders of the plate. To 
represent the process of the progressive differentiation and 
stiffening of the callus tissue, which occurs in the secondary 
type of fracture healing, we assumed the following tissue 

 
Fig. 1.  Group velocity dispersion curves of the Lamb modes for a 
free plate (solid lines) and for a plate immersed in blood (dashed 
lines). The bulk longitudinal and shear velocity of the plate was 
4063 m/s and 1846 m/s, respectively, and the plate thickness was 4 
mm.  



 
 

 

 
Fig. 2.  The model of the healing bone along with the transmitter-receiver configuration. The capital Latin numbers correspond 
to the six different ossification regions that comprise the callus tissue. The bone is in vacuum (SeriesI)  or surrounded by blood 
(SeriesII). 

 
types to be involved in the process: initial connective tissue 
(ICT), soft callus (SOC), intermediate stiffness callus 
(MSC), stiff callus (SC) and ossified tissue (OT). We 
assumed that  healing progresses in three stages. At Stage1, 
the callus contained regions of MSC along the endosteal and 
periosteal surfaces of cortex at some distance from the 
fracture gap (i.e. in regions I and VI), SOC adjacent to them 
(regions II and V), while the remainder was occupied by 
ICT (regions III and IV). At Stage2, the callus consisted of 
ICT (in region IV), SOC (in region III), MSC (in region II) 
and SC (in regions I, V and VI). Finally at Stage3, bone 
formation has been almost completed and thus the callus 
tissue consisted of OT except for two regions filled with SC 
(region III) and SOC (region IV). A hypothetical “zero” 
stage (Stage0) was used to examine the influence of the 
callus geometry itself on the characteristics of wave 
propagation. In this stage, all the callus regions were 
assumed to be composed of cortical bone. All the soft tissue 
types were assumed isotropic and their material properties 

are presented in Table I. 

A. Axial-Transmission   
A transmitter and a receiver were placed in contact with 

the plate’s upper surface, equidistant from the fracture 
callus. The contact area of the transducers was 5mm and 
their center-to-center distance was 35 mm, which is a typical 
value used in ultrasonic studies of bone [2,6,9,11]. The 
excitation signal was described by a 3-cycle Gaussian-
modulated 1MHz sine. The transducers operated in the 
longitudinal mode. 

B. Boundary Conditions 
Two Series of simulations were performed. In SeriesI, the 

bone model was in vacuum (free boundary conditions). In 
SeriesII, the bone model was immersed in blood in order to 
take into account the effect of the surrounding soft tissues. 
In both series, absorbing boundary conditions were applied 
at the left and right sides of the plate in order to eliminate 
the interference from the reflections which correspond to an 
infinitely-long plate.  

C. Simulation Method 
Numerical solution to the 2-D wave propagation problem 

was performed with the finite difference method using the 
commercial software Wave2000 Pro (CyberLogic, Inc., NY, 
USA). The element size was set at 0.1 mm which 
corresponds to at least ten elements per smallest wavelength. 
The sampling frequency was 46.97 MHz. The duration of 
the recorded signals was 110 μs.  

D. Time-Domain Analysis 
The ultrasound propagation velocity was determined by 

dividing the transducers’ in-between distance to the 
transition time of the FAS. The FAS was detected in the 
signal waveform by using a threshold equal to 10% of the 
amplitude of the first signal extremum [2, 6, 9, 11]. 

E.  Time-Frequency Domain Analysis 
T-f signal analysis has been previously used for 

representing the velocity dispersion of the Lamb modes in 
non-destructive testing applications [17,18]. Contrary to 
traditional time domain and 2-D Fourier transform 
techniques, t-f analysis requires only a broadband excitation 
to represent the dispersion of multiple wave modes. 

In the present work, we used the reassigned Smooth-
Pseudo Wigner-Ville (RSPWV) energy distribution function 
since it has been previously found effective in representing 
and localizing guided waves [11]. 

IV. RESULTS 
The propagation velocity of the FAS wave was found 

3914 m/s for the intact bone model in both SeriesI and 

TABLE I 
MATERIAL PROPERTIES OF THE TYPES OF SOFT TISSUES INVOLVED IN 

THE HEALING PROCESS 
Tissue 
Type 

Density 
(Kg/m3) 

Young’s 
Modulus 

(MPa) 

Poisson’s 
ratio 

Bulk 
Longitudinal 
Velocity (m/s) 

ICT 1050 3 0.4998 1543 
SOC 1100 1000 0.47 2337 
MSC 1200 3000 0.45 3079 
SC 1250 6000 0.43 3697 
OT 1400 10000 0.40 3912 

 



 
 

 

SeriesII. Since the velocity was close to the bulk velocity of 
the bone (4063 m/s), the FAS corresponds to a lateral wave 
rather to a guided wave. The evolution of the FAS velocity 
over the simulated healing stages in SeriesI and II is 
illustrated in Fig. 3. 

Snapshots of wave propagation in the healing bone at 
Stage2 in SeriesII recorded at 3 μs, 10 μs, and 17 μs are 
presented in Fig. 4. It can be seen that in addition to the 
waves propagating in the bone, waves are also radiated into 

the fluid. When the waves arrive at the callus, the 
wavelengths in each region become different depending on 
the properties of the soft tissues. Complicated phenomena 
and multiple reflections occur at the boundaries of the callus 
regions. Due to the energy leakage into the fluid, the 
received waves are highly attenuated compared to those in 
SeriesI.  

The t-f signal representations of the signals obtained from 
the intact bone model in SeriesI and II are illustrated in Figs. 
5(a) and (b), respectively. The t-f representations are shown 
in the form of pseudo-color 2-D images, where the color of a 
point represents the amplitude (in dB) of the energy 
distribution. In order to identify the propagating guided 
modes in the t-f representation, we superimposed on each 
image the corresponding theoretical velocity dispersion 
curves. From Fig. 5(a), it can be observed that in the free 
intact bone two Lamb modes were dominant, namely the S2 
mode with dispersion identified in the 0.55 - 0.8 MHz 
frequency range and the A3 with dispersion from its cut-off 

frequency (1.05 MHz) up to 1.25 MHz. The situation was 
different in the immersed intact bone (Fig. 5(b)). The 
dispersion curves clearly characterized the l-S3 and l-A3 
modes, whereas the propagation of some other modes, such 
as the l-A0 and l-S2, was poorly supported.    

The t-f representations of the signals obtained from the 
simulated healing stages in SeriesI and SeriesII are 
illustrated in Fig. 6 and Fig.7, respectively. It can be seen 
that the geometrical disturbance induced by the callus at 
Stage0 affected the dispersion of the S2 and A3 modes in 

Fig. 6.  T-f representations of the signals obtained from the healing 
bone in SeriesI at (a) Stage0, (b) Stage1, (c) Stage2, and (d) Stage3.  

 
Fig. 5.  T-f representations of the signals obtained from the intact 
model (a) in SeriesI and (b) in SeriesII. The corresponding 
theoretical dispersion curves are also superimposed on each image.  
 

 
Fig. 3.  Evolution of the FAS propagation velocity throughout the 
healing progress of the model in SeriesI and SeriesII.  
 

 
Fig. 4.  Three snapshots of wave propagation in the healing bone at 
Stage2 in SeriesII recorded at (a) 3 μs, (b) 10 μs , and (c) 17 μs . 
 



 
 

 

SeriesI (Fig. 6(a)) and of the l-S3 and l-A3 in SeriesII (Fig. 
7(a)). In both cases, additional waves appeared which did 
not correspond to any theoretical mode and can be possibly 
attributed to reflections caused by the callus geometry. The 
dispersion of the modes was also sensitive to the material 
changes that took place from Stage1 to Stage3.  

V. DISCUSSION  
 We presented a numerical study on guided ultrasound 

wave propagation in intact and healing long bones. The 
effect of the surrounding soft tissues on the propagation 
velocity of the FAS wave and on the dispersion of guided 
waves was evaluated by comparing two different boundary 
conditions.   

We developed a 2D bone model similar to that developed 
in our previous work [11] and to those reported in 
osteoporosis studies [6,9]. We extended the model of callus 
by incorporating several ossification regions. Three stages 
were used to simulate progress of bone healing. According 
to [16], Stage1 and Stage2 correspond to the fourth and 
eighth week after fracture, respectively, whereas Stage3 
reflects the phase before bone remodeling. Although those 
stages represent critical phases of the healing course, the 
early stage of haematoma development and the gradual 
reduction in the dimensions of callus as a result of the bone 
remodeling process were not taken into account.  

Although the presented model is enhanced in terms of 
realistic boundary conditions, compared to previous studies, 
many simplified assumptions were adopted. These include 
that bone and callus were assumed elastic materials, and 
their anisotropic properties were not taken into account. 

For 1-MHz excitation the wavelength in the bone 
(approximately 4mm) was comparable to the cortical 
thickness. We showed that the FAS wave propagated in the 
intact bone models (both free and blood-loaded) as a non-
dispersive lateral wave, since its velocity was found to be 
close to the nominal bulk velocity of bone. Also, the blood-
loading conditions did not affect the velocity of the FAS in 

the intact model. When the callus was incorporated in the 
bone model, the FAS velocity increased during the 
simulated healing process, which is in agreement with our 
previous study [11]. The velocity at each healing stage was 
found slightly lower in SeriesII, however its evolution over 
the stages remained the same. The FAS wave corresponds to 
a lateral wave which according to [5,7] propagates only 
along 1.4 mm deep layer at 1 MHz. As such, its velocity of 
propagation does not reflect the properties of the endosteal 
and periosteal callus regions.  

However, the broadband excitation that was utilized 
supported the generation of multiple guided modes that 
depend on the properties of the whole medium. We analyzed 
our signals by means of t-f signal analysis techniques. The 
simulated dispersion of guided modes in the intact bone was 
found to be modified when fluid boundary conditions were 
taken into consideration. More specifically, in the free intact 
bone the S2 and A3 modes propagated, whereas in the 
immersed bone the dominant modes were the l-A3, l-S3. 
Therefore, the propagation of guided waves is greatly 
affected by the boundary conditions of the problem.  

For the healing bone, we found that the propagating free 
and leaky guided waves were influenced by both 
geometrical and mechanical properties of the callus. The 
significant effect of callus geometry on mode propagation 
was assessed separately at Stage0 in both series of 
simulations. We also showed that mode dispersion was 
influenced by the material properties of callus at each stage. 
However, at Stage3 the dispersion of the modes gradually 
returned to that observed at Stage0. Since guided waves can 
reflect geometrical and structural changes that take place 
throughout the cortical thickness, they can offer an 
improved means of monitoring bone fracture healing. 

VI. CONCLUSIONS  
 We performed a numerical study of wave propagation in 

a healing bone which was simulated as a 2-D infinite plate 
immersed in blood. It was well understood from the model 
that the surrounding soft tissues have great impact on guided 
wave propagation, both in the intact and in the healing bone. 
This is justified by the fact that they provide leakage paths 
for the ultrasonic waves resulting in modified dispersion 
curves compared to those derived from a free plate. 
Therefore, the application of realistic boundary conditions is 
crucial to interpret clinical measurements. Nevertheless, 
further research is needed in order to investigate the effect of 
anisotropy and irregular geometry of bone on the 
characteristics of wave propagation. Three-dimensional 
bone models taking into consideration such realistic 
parameters need to be developed. 
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