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Abstract— Biomedical signal recordings present different kinds
of interference and several noise cancelling methods have been
proposed. In this paper we present a bayesian approach for signal
denoising. The maximum likelihood solution of this problemis the
observations, which is not useful at all. To obtain a meaningfull
solution we introduce constraints in our problem. We choose
the desired signal to belong to the class of smooth signals. The
introduction of constraints lead us to a bayesian formalismof
the problem. Often the use of priors introduce hyperpriors in
the problem. To infer the parameters and the hyperparameters
of the problem the variational bayesian methodology is used.
Our method is compared with one widely used method for
signal denoising, the spectral substraction. The comparison is
made in terms of signal enhancement, noise reduction and signal
distortion and the results have shown that our method performs
better in noisy environment. Another advantage of our method
is that no tunable parameters are used, since it is data driven,
which means that the method is fully automated.

I. I NTRODUCTION

Signal Enhancement (SE) attempts to improve one or more
perceptual aspects when the signal is corrupted by noise (e.g.
overall quality, intelligibility of human or machine recogniz-
ers). The improvement is related to the minimization of the
effects of the noise on a processing system performance [1].
The Signal Enhancement problem consists of a family of
problems characterized by the type of noise, the way the noise
interacts with the signal and the number of channels available
for enhancement.

The Signal Enhancement problem has been attracted much
attention in the last two decades. The SE algorithms can
be classified according to the signal model as parametric or
non parametric and according to the number of channels as
multichannel or single channel. In the parametric techniques
the signal is modeled using a stochastic autoregressive (AR)
model embedded in Gaussian noise. Signal Enhancement is
related to the estimation of AR parameters applying a Wiener
[2] or a Kalman filter [3], [4] to the noisy signal. Non-
parametric techniques do not estimate the signal parameters
and require a noise fingerprint in a transform domain (DFT or
KLT domain), which is used during signal-and-noise periods
to obtain an estimate of the clean signal. Well known non-
parametric techniques include spectral substraction [5] and

signal subspace - based techniques [6]–[8].
Many of the algorithms proposed to estimate the desired

signal formulate the problem as maximum likelihood (ML)
estimation problem [9]. However, this approach has one seri-
ous drawback, it is sensitive to overfitting. This can be avoided
using a bayesian approach, where the priors over the signal
and/or the coupling systems will act as regularizers. Bayesian
estimation is a framework for the formulation of statistical
inference problems. The bayesian philosophy is based on
the combination of the evidence contained in the data with
prior knowledge. To calculate the evidence one just multiplies
the model likelihood by the priors and then intergrate the
parameters. In some cases this integral can be computed
analytically, but when the evidence integral is analytically
intractable one has to resort to approximation techniques such
as the Variational Bayesian (VB) Methodology, the Markov
Chain Monte Carlo (MCMC) methods and the Laplace Ap-
proximation [10]. However, in the Laplace approximation the
Gaussian assumption is based on the existence of a large
number of data, and the posterior will be presented poorly
for a small dataset, besides that we need many operations
to compute the derivatives of the Hessian. Similarly, in the
MCMC methods the number of samples required for accurate
estimates must be large. In addition, the lack of the acceptable
global measure indicating if the Markov chain has reached
equilibrium is a problem. In contrast, the VB methodology
is an efficient computational method because gives closed
form solutions and a universally accepted criterion to stopthe
process, which is the convergence of the variational bound.

In this work we present a bayesian formulation of signal
denoising in the presence of white gaussian noise. Given the
observations we can obtain the desired signal. We introduced
priors, which however make the problem intractable. To over-
come it and obtain an approximate solution the Variational
Bayesian (VB) formalism is used. In this case the priors which
depend on parameters such as mean and variance are either
assumed known or can be determined as part of the inference
problem [11]. This finally leads us to an hierarchical model
from which an estimation for the signal and the parameters can
be derived. Our approach is evaluated using ECG recordings,



where artificial noise is added, and the results are compared
with a widely applied methodology for signal denoising, using
well accepted measures.

II. M ETHODOLOGY

We consider a signals(k) corrupted by additive white
gaussian noisen(k). The noisy signal can be expressed as
follows:

y(k) = s(k) + n(k), (1)

wherek is the index sample andk = 1, · · · , N with N being
the number of samples. The above equation can be written in
vector notation as:

y = s + n, (2)

wherey = [y(1), · · · , y(N)]. The signals is independent of
the noise and stationary. The problem is to estimate the signal
s. The ML approach in this problem is meaningless because
the ML estimator is the observations. So the problem is ill
posed. To overcome this difficulty one has to regularize the
original problem. Typically, regularization means the introduc-
tion of a constraint in the original problem. The constraintis
chosen ad hoc or it is based on some a priori information of the
quantities to be estimated. We choose to introduce smoothness
prior over the signals [11]. However, the use of smoothness
prior introduce a new parameter,α, in our model. To deal
with this parameter we introduce a hyperprior over it. The
prior over the signals is:

p(s|α) ∼
( α

2π

)
N

2

exp
{
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α

2
sTLTLs

}

. (3)

The matrixL is a discrete approximation of thedth derivative
operator. In this case we use the second difference matrix. In
our problem we assume white gaussian noise, i.e.

p(n|λ) =
( λ
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)
N
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exp
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λ

2
nTn

}

. (4)

whereλ is the precision of the noise (inverse variance). The
two parameters,α andλ, introduced into the problem follow
gamma distribution:

p(α) = Γ(α; bα, cα), (5)

p(λ) = Γ(λ; bλ, cλ), (6)

where

Γ(x; b, c) =
1

Γ(c)

xc−1

bc
exp(−

x

b
). (7)

The choice of this distribution is based on the fact the Normal
and Gamma distributions are conjugates [12]. Now we need to
estimate the signals and the parametersα andλ. The signal
s is uncorrelated to the noise, and hence to the parameterλ,
so the overall prior can be expressed as:

p(s, α, λ) = p(s | α)p(α)p(λ). (8)

III. VARIATIONAL BAYESIAN METHODOLOGY

Consider the problem of evaluating the marginal likelihood:

p(y) =

∫

p(y, θ)dθ, (9)

where θ = {θi} denotes the set of all the parameters and
hidden variables in the model andy are the observations.
Sometimes such integrations are analytically intractable. Vari-
ational methods involve the introduction of a distributionq(θ)
which provides an approximation to the true likelihood. The
true marginal log-likelihood, then, can be bounded as:

ln p(y) = ln

∫

p(y, θ)dθ (10)

= ln

∫

q(θ)
p(y, θ)

q(θ)
dθ (11)

≥

∫

q(θ) ln
p(y, θ)

q(θ)
dθ (12)

= F (q). (13)

In Eq. (12) we have applied Jensen’s inequality. The function
F (q) forms a lower bound on the true marginal likelihood.
The quantityF (q) is tractable through a suitable choise to
the q-distribution, even though the true log-likelihood is not.
The difference between the true log-likelihoodln p(y) and the
boundF (q) is the Kullback - Leibler (KL) divergence between
the approximating distributionq(θ) and the true posterior
p(θ|y)

KL(q||p) = −

∫

q(θ) ln
p(θ|y)

q(θ)
dθ. (14)

The goal in a variational approach is to choose a suitable
form of q(θ) so the lower bound can be evaluated. In general,
we choose a family ofq-distributions and we seek the best
approximation within this family by maximizing the lower
bound. Since the true log-likelihood is independent ofq this
is equivalent to the minimization of KL divergence. The
KL divergence between the two distributionq(θ) and p(θ|y)
is minimized whenq(θ) = p(θ|y) and thus the optimal
solution for q(θ) is the true posterior. This solution does not
simplify the problem, so to make progress we consider a more
restricted range ofq-distribution. One approach is to consider
a parametric form forq(θ) such thatq(θ, φ), governed by a set
of parametersφ [13]. We then minimize the KL divergence
with respect toφ, finding the best approximation within this
family. An alternative approach is to restrict the functional
form of q(θ) by assuming that it factorizes over the component
variables{θi} in θ [10]:

q(θ) =
∏

i

qi(θi). (15)

Minimizing the KL divergence over all the factorial distribu-
tions qi(θi), we have the following result:

qi(θi) ∝ exp < ln p(y, θ) >k 6=i, (16)

where < · >k 6=i denotes expectation with respect to the
distributions qk(θk) for all k 6= i. Incorporating the prior



knowledge for the parameterθi, p(θi), we have:

qi(θi) ∝ exp < ln p(y, θ) >k 6=i p(θi). (17)

As a result the estimated posterior is proportional to the
expected likelihood over all parameters except from parameter
θi multiplied by the prior of parameterθi. In our problem the
parametersθ is the signals and the parametersα andλ.

Now to apply the VB methodology in our problem we ap-
proximate the posterior distribution with the factorized density

q(s, α, λ | y) = q(s | y, α)q(α | y)q(λ | y). (18)

Maximizing F (q) with respect toq(s | y, α), q(α | y) and
q(λ | y) the following solutions are obtained. The posterior
over the signals is a Normal distribution with mean and
covarianceN (̂s,Cs):

ŝ = λ̂Csy, (19)

Cs = (λ̂ + α̂LTL)−1. (20)

The posterior over parameterλ is a Gamma distribution with
parameters:

1
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Finally the posterior over parameterα is a Gamma distribution
with parameters

1

b′
α

=
1

2
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, (24)
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2
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α̂ = b′αc′α. (26)

To reduce the complexity of the algorithm the above equations
can be written in the Discrete Fourier Domain using the fact
of the asymptotic equivalence of the eigenvalues between of
Toeplitz and circulant matrices [14]. So in the DFT domain

we have:
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The estimated signal can be obtained by inverse transformation
of the quantityS(i), i = 1, · · · , N . The learning algorithm
consists of the equations (27)-(34). These equations are applied
iteratively until the convergence of the lower boundF (q)
or the convergence of the parameters. The computational
complexity of this algorithm is low. To obtain an estimate
of the signals we need to estimate only two parameters,α

andλ. This is a very strong feature of the proposed algorithm
compared to other algorithms proposed in the literature, which
need the estimation of a stationary covariance matrix such as
the algorithms based on the subspace approach [6]–[8].

IV. RESULTS

To evaluate our approach we have used two recordings
(100 and 222) from the BIH/MIT Arrhythmia database [15].
The noisy signal was created using Eq.(2) for SNR values 0,
5, 10, 15, 20 dB. The algorithm was applied to frames of
the noisy signal which are overlapped by 25%. The analysis
window was a rectangular window and the length of each
frame wasN = 1024. We compare our method with the
spectral substraction method [16]. The compromise between
signal distortion and the level of residual noise is a well
known problem. To quantify this trade-off we introduce two
objective measures. The first measure is the signal distortion
index which measures the degree of signal deformation. The
other measure is the noise reduction factor which quantifies
the amount of noise being attenuated. The signal distortion
(SD) index is defined (in dB) as:

SD = 10 log
10

∑

N−1

n=0
[s(n) − ŝ(n)]2

∑N−1

n=0
[y(n) − s(n)]2

. (35)

TheSD index compares the energy of the difference between
the true and the estimated signal,ŝ(n), with the energy of the
noise. WhenSD → −∞ the estimation of the signal is perfect
and whenSD = 0 the estimated signal is the same with the
noisy signal.



The noise reduction is defined (in dB) as:

NR = 10 log
10

∑N−1

n=0
[y(n) − s(n)]2

∑N−1

n=0
[y(n) − ŝ(n)]2

. (36)

The NR index compares the energy of true noise to the
energy of the estimated noise. WhenNR → ∞ there is no
noise reduction and whenNR = 0 the noise has been fully
removed.

Finally, we introduce the total output SNR measure, defined
as:

SNRtot = 10 log
10

∑N−1

n=0
s2(n)

∑

N−1

n=0
[s(n) − ŝ(n)]2

. (37)

WhenSNRtot → ∞ we have complete reconstruction of the
signal. In the above equations,ŝ(n) is the estimated signal and
N the number of samples.

The objective measures for various SNR levels for the two
selected recordings are shown in Figs. 1 and 2. We can observe
that the results of our approach are better than spectral sub-
straction. In general, our approach produces an estimate ofthe
signal with less signal distortion and higher noise reduction.
However, the quality of an estimate of biomedical signal

can not be based only in quantitative results. For example,
the quality of denoising for ECG recordings depends on the
ability to accurately obtain waveforms of the recording such as
P wave, QRS complex and T wave, which are usually hidden
by noise. We illustrate it in Fig.3, which shows a segment of
recording 222 with SNR=0dB, and two estimates obtained by
the proposed approach and spectral substraction, respectively.
We have shown the results to experienced cardiologists and
they agreed that the P wave, QRS complex and T wave are
more obvious in the estimate produced by our approach, and
the signal itself is less distorted.

V. CONCLUSIONS

In this work we have presented a method for signal denois-
ing when the noise is white gaussian. The problem is formu-
lated in a bayesian framework and the variational bayesian
methodology has been used for its solution, choosing the
smoothness prior. Comparing our method with the sell known
spectral substraction better results are obtained in termsof sig-
nal enhancement, signal distortion and noise reduction, when
the two methods are applied in ECG recordings contaminated
with various levels of noise. In addition a strong advantageof
the proposed approach compared to other methods for signal
denoising [6]–[8] or more specifically for ECG denoising
[17], is its simplicity. Our method needs to estimate only two
parameters, the precision of the noise and an hyperparameter
for the signal. Furthermore, it doesn’t need a noise fingerprint
such as the spectral substraction or an accurate method for
the estimation of the noisy signal covariance matrix such as
subspace approaches [6]–[8]. In the future we intend to use
different priors on the signal, such as the subspace prior [11],
and noise conditions, and test the applicability of these models
in biomedical signals.
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Fig. 1. Signal Distortion, Noise Reduction and output SNR indexes for
record 100. The x-axis represents the level of SNR input noise and the y-axis
the values of the measures
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