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Abstract— A hybrid multi -source, multi-functional assistive 
interface system was conceived with the intention of 
addressing the needs of a diverse group of patients with 
congenital, chronic, permanent or temporary motor 
disabilities for local and/or remote actuator control and/or 
task accessing, through the processing of source signals 
acquired from the disabled patient. The inherit differences 
present on patient’s cases makes it difficult to manufacture 
assistive mechanisms that can be broadly distributed; 
therefore, adaptability was a main requirement. An FPGA 
board was incorporated into the main hardware design in 
order to offer increased flexibility when determining signal 
acquisition and processing strategies, in this way expanding 
the different types of possible source signal and output control 
signals. EMG and EOG signals, obtained through non-invasive 
electrodes, are of special interest due to their importance 
when interfacing with patient with limited muscular control 
(quadriplegics, cerebral palsy, etc.). Also, this paper presents 
an adaptive EMG signal processing scheme with pattern 
differentiation for actuator control, which can be separated in 
two main algorithms: a detection algorithm and an 
interpretation algorithm. The detection algorithm senses 
activation/deactivation of muscular activity through noise 
rejection and activity detection based on wavelet filtering and 
self-adjustable thresholds. The interpretation algorithm 
associates an input vector (formed by source signals events) 
with a particular control task, through comparison with a tree-
structured database. A training mode allows the formation of 
the mentioned database of “to be recognized” patterns. 
Although the design is still in a prototype stage, a limited 
number of trials have been performed, upgrades to the system 
are being added continuously and the information gathered up 
to now shows promising results. 
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I. INTRODUCTION 

HE Human-Computer Interface (HCI) has been the centre 
of attention within the Assistive Technology (AT) 

research groups. New advances in adaptive technology and 
the reduced cost of some high level programmable hardware 
(CPLD, DSP, and FPGA) has in a way allowed the departure 
from HCI to a more general approach; the Human-Machine 
Interface (HMI or Human Device Interface, HDI). Within 
rehabilitation engineering, especially in the area of 
technological aids for disabled patients with significant 
motor compromise in one or more limbs, the need for HMI is 
becoming more apparent. By obtaining information from 
sources were the patient still has control, such as bio-
signals, (especially electromyography (EMG) and 
electrooculography (EOG)), a limited limb movement, voice, 
etc., these interfaces could be used for 
controlling/performing a wide number of functional tasks [1]. 
A wide variety of devices and actuators have been 
developed for expanding the capacities of a disabled 
individual, such devices or “assistive devices” include: 
mobility devices, remote controls, robotic arms [2], domestic 
devices (instrumented home appliances, switches, doors, 
etc.) and many others. These devices allow an individual to 
perform many functional tasks, therefore restoring some 
sense of self -sufficiency by allowing him/her to interact with 
his/her environment and social surroundings. 
 
A broad study (conducted in several rehabilitation centers, 
orthopaedic hospitals, and augmentative communication 
centers, among others) revealed a lack of sufficient 
commercially available assistive technology devices in 
Venezuela’s metropolitan area, especially when referring to 
low cost versions [1]. It would appear that the particular 
details present in each patient’s case make it inconvenient or 
to expensive for industry to manufacture low-cost assistive 
mechanisms that could be broadly distributed. Even for 
patients with the same illness, factors such as age, sex, 
height, weight, etc., can make it highly improbable for them to 
benefit from a common assistive mechanism.  
 
The prohibitely high cost of most electronic assistive 
technology motivated the Center for Assistive Technology 
(CETA), at Venezuela’s Simon Bolivar University, to 
undertake among their main objectives the mission of 
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designing and developing low-cost alternative solutions 
within assistive technology [1,2,3]. This paper describes the 
algorithms being developed using EMG signals as an input 
source for the hybrid multi-source, multi-functional assistive 
system [4,5] (see Figure 1) that could benefit a wide variety 
of patients with motor and other types of disabilities. 

Figure 1. FPGA based model of universal interface 

II. METHODOLOGY 

A. Preliminary Research and Algorithm Development 

 
In order to better understand EMG signals a preliminary 
study of an EMG signals database was performed [4]. The 
signals were collected at the Children Orthopedic Hospital at 
Caracas, Venezuela, with surface electrodes connected to a 
MA-200 EMG System (Motion Labs Inc.). The database 
contains a significant number of EMG data from lower limbs, 
collected during gait analysis studies. The patients vary in 
their condition, but most present some level of motor 
compromise. Due to the nature of the signals, the data 
presents a variety of signal features (biopotential activation, 
interferences, noise, artifacts, baseline wandering, etc) 
needed for a study seeking muscular activation detection for 
a real multi-patient case scenario. Based on that database, 
signal processing algorithms were selected and ‘tuned’. A 
draw back of the data was the lack of proper determination of 
intentional muscular activation sequences, but since the 
database represents only a starting point it was not 
considered an obstacle. Professional assistance was use to 
determine sequences of intentional muscular activation 
versus non-intentional or false-positive scenarios due to 
muscular compromise or other factors. 
 
An extra group of data was  acquired with voluntary muscular 
contractions synchronized with on-off timing. T he voluntary 
muscle activation signals set, was collected through the 
same EMG recording protocol (surface electrodes, MA-200 
EMG System), triggering a timed contraction of wrist 

pronator (pronator tere), wrist supinator and 
esternoclidomastoid muscles. Three subjects were asked to 
start, maintain, and end a group of ten contractions, in 
isometric, increasing and decreasing tension contractions. 
The start -maintain-end time windows were recorded in an 
extra channel. Twenty random maintain-time-windows were 
asked, time between windows was random too. This dataset 
is intended to be used as a ‘detector tuning’ reference signal.  

 
An in depth characterization of the EMG signals seemed not 
to be necessary for an algorithm seeking to recognize muscle 
activation. Traditionally, spectral and amplitude analysis are 
the approach when studying EMG signals, and numerous 
techniques exist for such purpose. Since the objective is to 
extract information from the EMG signal in real time or 
dynamic scenarios, many techniques that depend on post-
processing of the signal were be readily discarded. Pattern 
recognition techniques based on Support Vector Machines  
(SVM), Neural Networks (NN), Independent Component 
Analysis (ICA), Matching Pursuits, and Wavelets 
Decomposition (WD), each has unique benefits and 
drawbacks, but due to the inherent calculation simplicity and 
of mapping a WD based algorithm into discrete electronic 
components, WD was chosen as a starting point. WD also 
provided the added benefit that although related to spectral 
components extraction it is a real-time technique that does 
not force the static analysis of signals, and could therefore 
be modified to the serve the main purposes. 
 
WD of the signals reveal a number of interesting phenomena, 
some which initiated separate studies  within the research 
group and the findings will be presented in future articles. 
An important consequence of WD’s separation of spectral 
components was the resulting “cleaning” of the EMG signal 
from noise and other factors, as it can be seen on Figure 2. 
After observation of a large number of data, the third 
decomposition (D3, third from the bottom on Figure 2) was 
determined to offer the benefits of having fewer high 
frequency elements (noise, etc.) while still maintaining a 
strong correlation with the original signal. This filtering 
represented a first step in the developed of a simple muscle 
activation detection algorithm. 
 
A crude scheme to transform the EMG signals into a binary 
signal was then developed. The binary signal would 
represent muscle activation with a high state and no muscle 
activation with a low state. In the past this type of strategy 
has utilized threshold based schemes to establish the binary 
representation of a signal. Background noise, crosstalk, and 
fatigue, among others, are responsible for complicating the 
use of thresholds for muscle activation detection. Not only a 
common threshold among multiple patients would be 
unpractical, a single patient’s patterns change during 
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relatively  short periods of time, requiring constant tuning for 
proper performance. Being that EMG signals cannot be 
considered consistent, then the algorithm would have to 
count with a self-adjusting threshold.  

 
As previously mentioned, the output signal of a D3 WD with 
a wavelet DB4 (factor used for WD), was chosen through 
observation to be an adequate candidate  for further 
processing. This signal was then rectified for simplification 
and smoothed with a window averaging effect, in order to 
reduce the number of peaks and disruptions present in the 
signal. The pseudo-code for such averaging procedure is as 
follows: 
 
buffer = [0..n] 
position = 0 
initialize = false 
For each signal’s sample 
 do 
  buffer[position] = sample 
  if (initialize == true) 
   sample = averaging_function(buffer)  
  fi 
 
  position = position+ 1  
  if (position == n) 
   position = 0 

   initialize = true 
  fi 
 od 
 
The actual threshold level was determined by another signal 
averaging algorithm, which continuously averaged the 
incoming data with past data. In order to avoid sharp 
changes in the signals average, the algorithm considered a 
weight factor to compensate. The signals average function 
pseudo code is as follows: 
 
num_buffers = B  
size_buffer = T 
array_buffers = [0..num_buffers] 
array_average = [0..num_buffers] 
actual_buffer = 0 
position = 0 
average = 0 
For each sample 
 do 
  buffer = array_buffers[actual_buffer]  
  buffer[position] = sample 
  position = position + 1 
  if (position == size_buffer)  
   array_average[buffer_actual]= 
averaging_function(buffer)  
   average= averaging_fu nction(array_average)  
   position= 0  
   actual_buffer = actual_buffer  + 1 
   if ( actual_buffer == num_buffers) 
    actual_buffer = 0 
   fi 
  fi 
 od 
 
The threshold was then established as the signal’s average 
adjusted by a factor of 1.75, obtained through trial and error 
and observation. Finally, in order to compensate noise effect 
in the signals amplitude a simple noise level routine was 
implemented by applying averaging to a small window of 
data, in this way taking into consideration the changes of the 
signal; the consequent noise level was utilized to adjust the 
signal level. The algorithm then compares de difference 
between the signal and noise level with the threshold, in 
order to determine muscle activation. 
 
It should be noted that the need for developing a dynamic 
algorithm, i.e. an algorithm that could process incoming real 
time signals, was a strong motivator for algorithm and 
calculations simplicity. Further observation and experimental 
trials with the database signals and voluntary muscle 
activation signals, revealed the need to compensate for false-
positive and positive-negative scenarios, specially in the 
presence of rapid muscle activation scenarios or tremors 
(such as in Parkinson’s disease patients). The algorithm 

  
Figure 2. Wavelet Decomposition in five levels using 

wavelet DB4. Original signal in red. 



 
 

 

compensates  for such scenarios through the use of 
adjustable “grace” periods and the beginning and end of 
recognized muscle activation. Other compensation strategies 
currently being tested are using a double threshold one with 
a smaller factor, for situation when the muscle activation has 
already been detected. These last strategies represent 
adjustment to the main algorithm in order to increase the 
robustness for unforeseen scenarios. The following section 
shows the complete algorithm: 

 

B. Single Channel Muscle Activation Detection 

 
The algorithm presented before, was designed as to be 
completely implemented in hardware, in such way maximizing 
its processing speed capacity. The wavelet based 
preprocessing and filtering was substitute and simulated 

with hardware equivalent filters . When combined with an 
FPGA based hardware structure, parallelism can be 
incorporated in order to process multi-channel inputs 
efficiently [4]. The final algorithm can be seen in Figure 3, 
while a sample input signal (with reference trigger signal) can 
be observed in figure 4 (a). In Figure 4 (b) we can observe the 
signals of the different stages of the algorithm, including: the 
processed EMG signal, the noise level, the threshold and the 
resulting digitalizes output.  

 

C. Multi-channel Detection 

 
The multi-channel detection was based on a vector formation 
scheme [4], where the digitalized outputs of the multiple 

channels where combined in one input vector. This strategy 
limits the user control through EMG to one task per 
sequence, since the multiple channels’ outputs are being 
combined. While this seems very limiting, this scenario is 
only being considered for the initial stages of the hybrid 
interface. Future developments will consider independent 
multi-channel analysis, providing patients with a more 
flexible control scheme. 

D. Training Algorithm 
 
In order to recognize an input pattern, so as to be used for 
control purposes, it is necessary to consider a manner for 
comparing such patterns. The direct configuration of the 
patterns, although not a multiple  patient adaptable method, 
provides the interface with an adequate hardware testing 
method. This early stage of algorithm testing required a 
simple training algorithm, which was conceived with the 
application of “majority rules” and undefined or “don’t care” 
conditions [4]. The training algorithm compares the input 
vector sequences and in the case of clear majority cases (per 
each channel) sets the pattern cells to such results. In the 
cases where a clear majority case can not be establish the 

 
 

Figure 3. Single Channel Muscle Activation Detection 
 

(a) 
 

(b) 
 
Figure 4. (a) Input EMG signal in red and pulsing trigger 
in blue. (b) Processed EMG signal in green, noise level in 

black, adjustable threshold in blue, recognized muscle 
activation in red. 



 
 

 

specific cell is set as a “don’t care” or undefined. This 
approach increases the flexibility of input vector sequences, 
allowing input channels that are not directly involve in the 
control command not to be involve. This training approach 
represents an initial step for a research that seeks a true 
patient adaptable self-training algorithm. 
 

 
Figure 5. Input vector sequences and resulting training 

algorithm result 
 

E.  Pattern Detection Algorithm 

 
A tree based scheme was implemented for comparing input 
vectors with pre -determined vector sequence patterns[4]. 
This method, used for optimizing search sequences, is 
known to reduce the matching speed; avoiding exponential 
searches. This also represents an initial step of a more 
developed pattern detection algorithm, which is adaptable for 
parallel input channel pattern detection. 
 

 
 

Figure 6. Pattern detection algorithm sample 

III. RESULTS AND DISCUSSION 

 
The registers of the EMG database from the Orthopedic 
Children Hospital contained data from normal subjects and 
patients with different types of Spastic Hemiplegia (SH), 
among other conditions; which where used to define and 
adjust the filters and parameters of the algorithm.  
 
Once the algorithm was established, data from voluntary 
muscle activation signals were collected and used for testing. 
Twenty repetitions for six distinct voluntary isometric 
contraction modes were registered; each repetition was 
synchronized with luminic stimuli for three subjects with no 

motor compromise. The contraction modes were: short (1 sec. 
contraction and 2 sec. of rest), long (4 sec. contraction and 5 
sec. of rest), crescendo (4 sec. of continuous increase of 
tension, 5 sec. of rest), spasmodic (twiches each 2 sec.), and 
random (the subject was given freedom to contract and rest 
at his/her discretion). The event detection algorithm was 
adjusted in order to obtain the best sensibilities and 
specificities, Table 1 contains the results: 

 
Table 1 

Sensitivity and Specificity of the event detection algorithm 
for different contraction modes  

 
 Muscle 

 
Wrist 

supinator 
Wrist 

pronator 
Esternocleido 

mastoid 
Contraction 

Modes  S SP S SP S SP 

Short  1 1 0,79 1 1 1 
Long 1 1 1 1 1 1 

Crescendo 0 1 1 0,66 0,75 1 
Spasmodic 1 1 0,95 1 1 1 
Random 0,88 1 0,79 1 1 1 

 
S = Sensitivity, SP = Specificity 

 
Table 1 reveals a very high specificity (except for the 
crescendo for the wrist) for the event detection algorithm, 
not the case for the sensitivity which ranges from 0,75 to 1. 
For a detection signal to be considered as successful a small 
delay limit (of approximate 100 milliseconds) from the 
reference signal was establish. This is to say that, the 
detection signal was considered a true positive if and only if 
it was within the delay limit for both on/off voluntary muscle 
activation edges. This maximum delay limit was established 
experimentally through the considerations of many factors, 
such as: the perception delay of the visual stimuli, the 
condition of patients who are going to use the interface, the 
‘slow’ nature of task to be done, etc. Additional efforts are 
being focused on minimizing the delays inherits from event 
detection algorithms, in this way allowing for faster tasks 
and/or faster learning of the user.  
 
Another aspect that requires improvement is the response of 
the detection algorithm to smooth signal increase/decrease, 
as observed by the 0 sensitivity for wrist supinator. This  
scenario could be caused by the threshold self-adjustability 
which evidences the need for future revisions. The 
introduction of a gradient detection scheme in future version 
could correct this shortfall. 

IV. CONCLUSION 

There exists a need for low cost assistive technology 
alternatives, especially in less developed countries, requiring 
ad-hoc solutions for each patient . This design is intended to 
provide an adaptable, low cost interface for disabled people 



 
 

 

who let the patient expand him/her capability to accomplish 
functional tasks and life expectations. The algorithms 
presented in this work seek to utilize EMG signals as an input 
source, allowing patients with severe motor compromise an 
alternative when interacting with their surroundings. This 
project although in an initial stage of hardware and 
algorithms developed shows some promising results. Future 
revisions, testing and new advancement are in progress.  
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