
 
 

 

 

 
Abstract—The objective of the present study is the prediction 

of fetal acidemia based on the Very Low Frequency (VLF) 
components of the Fetal Heart Rate (FHR) and Fetal Pulse 
Oximetry (FspO2) recordings during labor. In order to perform 
the spectral analysis, we applied the Continuous Wavelet 
Transform (CWT) and the adaptive approximation technique 
using the Matching Pursuit (MP) algorithm. The evaluation of     
FspO2 was based on calculating the time duration in which the 
FSpO2 was less than 30% (TSpO2<30%). We demonstrate that the 
oscillating activity of the FHR of about 0.01 Hz identified by the 
MP method and the TSpO2<30% parameter, show an adequate 
sensitivity (90%) in predicting fetal acidemia, whereas the 
combination of these two variables shows a very good 
specificity (94%). The results of the analysis of our data 
demonstrate that the analysis of the fetal heart rate by the 
matching pursuit and the fetal pulse oximetry recordings may 
provide additional source of information about fetal status and 
to alert the clinician to decide under objective conditions when 
and how to perform the delivery    

I. INTRODUCTION 
 

URING the last decades, Fetal Heart Rate (FHR) 
monitoring has been widely used for intra- and 

antepartum monitoring and assessment of fetal well-being. It 
is commonly used as a screening modulus of the fetes to 
detect in advance possible fetal problems that could result in 
irreversible neurological damage or even fetal death during 
labor. 

Although these methods have been proved to be a useful 
tool for the obstetricians, suspicious FHR patterns lack 
specificity and false positive FHR traces may result in 
unnecessary intervention increasing the caesarian section 
delivery rate. Moreover, there are cases in which the 
difference between inter and intra interpretations of the FHR 
patterns could be very large indicating the need of the 
development of methods that could provide more objective 
and quantitative analysis of the FHR traces and the 
application of non-invasive techniques such as the 
reflectance pulse oximetry as an additional source of 
information about fetal status, in order to prevent fetal 
hypoxia. Much research has gone into evaluating Fetal Pulse 
Oximetry (FSpO2), its safety, accuracy and reliability in 
predicting neonatal outcome [1]. 

In recent years, several attempts have been made to 
automate the diagnosis of the fetal status. Computerized 

algorithms, artificial neural networks and hybrid 
architectures have been developed and validated in order to 
assess the fetal heart rate parameters (baseline of the fetal 
heart rate, accelerations and decelerations, etc.) and to 
predict fetal acidemia. Our method is based on the Very Low 
Frequency (VLF) oscillatory components of the FHR and the 
statistical analysis of the FSpO2.   

The motivation of using the VLF components of the FHR, 
(especially the long term slowly varying fluctuations in the 
frequency range between 0.008-0.015 Hz, VLF_I), as one of 
the predictive parameters of fetal acidemia, was based on our 
previous study [2]. According to this study, we demonstrated 
that when there was a reduction of umbilical artery pH and 
an increase in base deficit there was an increase of this kind 
of oscillations.  

In order to evaluate this kind of activity, we applied the 
Wavelet Transform (WT) and the Matching Pursuit method 
(MP), since the fetal heart rate is a highly nonstationary 
signal and the traditional method of the Short-Time Fourier 
Transform (STFT) may eliminate the effects of 
nonstationarity, which occur at the expense of low frequency 
and time localization. Both WT and MP revealed the same 
results.   

In general, the Wavelet Transform has proved to be one of 
the most successful techniques for the analysis of signals, 
even when nonstationarities are present, and it is able to 
localize the signal more accurately both in time and 
frequency domains.  This method has rendered many 
successful applications in the area of biomedical signal 
processing [3] - [5] and has been used by Stefanovska et al. 
[6] and Lotrič et al. [7] in order to determine the spectral 
components of various biological signals.  

The Matching Pursuit is an adaptive method which 
exhibits high time-frequency resolution, provides time-
frequency representations of the signal’s energy without 
cross-terms, has the ability to identify multiple periodicities 
in a highly nonstationary signal and has been widely used in 
order to extract time-frequency patterns of various biological 
signals [5], [8]-[12]. 

The objective of the present study is to estimate the 
prediction of fetal acidemia based on: 1) the oscillating 
activity of the FHR in the frequency range 0.008-0.015 Hz 
obtained by the WT and the MP and 2) on the same 
parameters in conjunction with the FSpO2 (taken as a 
threshold value for FSpO2 measurement the 30% level) 
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during the second stage of labor. 

II. METHODOLOGY 

A. Data Collection 
The investigation was performed on seventy-three (73) 

fetuses of more than thirty-seven (37) weeks gestation, 
which were monitored throughout labor in the Labor Ward 
of the 3rd University Clinic of Obstetrics and Gynecology at 
Attikon Hospital of Athens. All women gave informed 
consent to this study, which was also approved by the Ethics 
Committee of the Attikon Hospital. Women with antepartum 
metabolic or endocrine disorders were not included in the 
study. Ten (10) cases, in which umbilical artery pH was 
lower than 7.15 (7.00 ≤ pHumb.art < 7.15, highly increased 
concentration of hydrogen ions in blood) and base deficit 
was lower than –8 mM/l formed the acidemic group 
according to Strachan et al. [13]. The rest of the fetuses 
formed the normal group. 

The Cardiotocogram (CTG) was recorded during labor 
using the Corometrics Series 120 Cardiotocograph. FHR 
was measured externally. A transducer placed on the 
mother's abdomen was used to direct an ultrasonic beam 
toward the fetal heart and to sense Doppler shifted echoes 
created by moving cardiac structures. FHR recordings were 
fed into a personal computer with a sampling frequency of 
1Hz. The last thirty (30) minutes segments before delivery 
were analyzed and artifacts and abrupt changes were 
removed manually. 

The percentage of the functional oxygen saturation of 
fetal arterial blood (FSpO2) was measured non-invasively by 
applying the Nellcor Puritan Benett fetal oxygen sensor to 
the cheek/temple area of the fetal head. Abrupt changes of 
FSpO2 were removed and linear interpolation was employed, 
when the duration of the artifact was below a certain value. 

B. Continuous Wavelet Transform 
Wavelet analysis is a scale-independent method. It 

involves the representation of a time function in terms of 
simple fixed building blocks termed wavelets. These 
building blocks are actually a family of functions, which are 
derived from a single generating function called the mother 
wavelet ψ(t) by translation and dilation operations creating a 
family of functions: 
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The parameter s is a scaling factor and stretches or 

compresses the mother wavelet. The parameter u is a 
translation along the time axis and simply shifts a wavelet 
and so delays or advances the time at which it is activated. 
The factor s1 is used to ensure that the wavelets at every 
scale all have the same energy. The stretched and 
compressed wavelets through scaling operation are used to 
capture the different frequency components of the function 

being analyzed. The translation operation, on the other hand, 
involves shifting of the mother wavelet along the time axis 
to capture the time information of the function to be 
analyzed at a different position. In this way, a family of 
scaled and translated wavelets can be created using scaling 
and translation parameters s and u. 

The Continuous Wavelet Transform (CWT) of a signal 
x(t) is defined as:  
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where * is the complex conjugation. The wavelet transform 
CWT(s,u) is a mapping of the function ψ(t) onto the time-
scale plane. The function can be recovered from CWT(s,u) 
by: 
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where the constant C is determined by the shape of the 
mother wavelet. The reconstruction is possible only if 0 < C 
< ∞ and in this case the mother wavelet is admissible. Using 
the reconstruction formula and the wavelet properties, the 
following expression for the total energy of the signal x(t) is 
obtained: 
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The function: 
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can therefore be interpreted as the two-dimensional wavelet 
energy density function of the signal in the time-scale plane. 
It is often called scalogram. The interpretation of εW(s,u) 
depends on the mother wavelet being used. To detect the 
frequency content in a given time interval, a mother wavelet 
that is well concentrated in both time and frequency must be 
used. All functions obey the uncertainty principle which 
states that sharp localization in time and frequency are 
mutually exclusive. The time (∆t) and frequency (∆ω) 
resolutions are connected by ∆t∆ω ≥ c, where c is a 
constant. The equality is attained only for a Gaussian 
function [14].  

The Morlet wavelet is the most commonly used complex 
wavelet. It is a Gaussian function modulated with a sine 
wave with basic frequency ω0=2πf0. In the time domain, it is 
written as: 
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The choice of ω0 is a compromise between localizations in 
time and in frequency. The function given by equation (6) is 
not really a wavelet as it has a non-zero mean, i.e. the zero 
frequency term of its corresponding energy spectrum is non-
zero and hence it is inadmissible. However, for ω0 > 5, the 
value of the second term in (6) is so small that it can be 
ignored in practice with minimal error and a simplified 
expression for the Morlet wavelet in the time domain is: 
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C. Matching Pursuit Method 
A nonstationary signal can be expanded into waveforms 

(called atoms) whose time-frequency properties can be 
adapted to its local structures. These waveforms are 
contained into a complete redundant dictionary. A general 
family of time-frequency atoms can be generated by scaling, 
translating and modulating a single window function g(t) 
[15],[16]. For any scale s > 0, frequency modulation ω and 
translation u, we denote γ = (s, u, ω) and define the atom as: 
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The factor s/1  normalizes to 1 the norm of gγ(t). The 
window function g(t) is usually even and its energy is mostly 
concentrated in a neighborhood of u, whose size is 
proportional to s. In frequency domain, the energy is mostly 
concentrated around ω with a spread proportional to 1/s. The 
minimum of the time-frequency variance is obtained when 
g(t) is Gaussian (Gabor atom). The dictionaries of windowed 
Fourier transform and wavelet transform can be derived as 
subsets of this dictionary, defined by certain restrictions on 
the choice of parameters. In the case of the windowed 
Fourier transform, the scale s is constant – equal to the 
window length – and the parameters ω and u are uniformly 
sampled. In the case of the wavelet transform, the frequency 
modulation is limited by the restriction on the frequency 
parameter ω = ω0/s, ω0 = constant. Thus, the Gabor atom 
used in the matching pursuit method is more flexible in that 
its scale, location and internal frequency may all be varied 
independently. 

In order to decompose a signal x(t) into a set of atoms 
which can best describe the time-frequency structure of the 
signal, an iterative orthogonal projection of x(t) onto the 
dictionary is necessary. In the first step of the iterative 
procedure we choose the vector gγ0(t) which gives the largest 
product with the signal x(t): 
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where the first term in the right-hand side of the above 

equation is the projection of x(t) onto the atom gγ0(t) and the 
second term R1x(t) is the residual vector after approximating 
x(t) in the direction of gγ0(t). After this first step, the iterative 
procedure is repeated on the following obtained residues: 
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In this way the signal x(t) is decomposed into a sum of time-
frequency atoms chosen to match optimally the signal’s 
residues, and if this procedure is repeated until the signal is 
decomposed into m components, x(t) is represented as: 
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and its energy is given by: 
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where Rix(t) is the signal residue for the ith iteration and 
R0x(t)=x(t).  

It can be shown [15] that as m → ∞, the signal can be 
represented as an infinite series of time-frequency atoms 
from the dictionary without any distortion: 
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and the energy of the signal is: 
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Although this decomposition is nonlinear, we have energy 
conservation as if it was a linear orthogonal decomposition. 
The matching pursuit method finds the time-frequency atoms 
in a decreasing energy order and the higher energy 
components of the signal are always extracted first. These 
higher energy components are regarded as the coherent part 
of the signal due to the similarity between their waveforms 
and the signal. 

To illustrate decomposition into time-frequency atoms, we 
compute its energy density defined by: 
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where Wgγi is the Wigner distribution of atom gγi(t,ω). 



 
 

 

Unlike the Wigner and the Cohen class distributions, the 
time-frequency energy distribution revealed by MP does not 
include cross terms.  

 

III. DATA PROCESSING 

A. Wavelet Transform Analysis of the Fetal Heart Rate 
Signals 

In order to apply the CWT, we used software written in 
Matlab (The MathWorks Inc.) and provided by [17]. An 
approximation of the continuous wavelet transform was 
calculated for the last 30 min of the normalized FHR signal 
during labor (each FHR signal was normalized by its 
standard deviation). In our implementation, the Morlet 
mother wavelet was chosen with ω0 = 6 to perform the 
transform, while the scales s were chosen arbitrarily to be 
fractional powers of two: 
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where s0 is the smallest resolvable scale, J determines the 
largest scale, δj is the spacing between the discrete scales, δt 
the time spacing (inverse of sampling frequency) and N the 
number of samples. s0 was chosen so that the equivalent 
Fourier period is approximately 2δt, since the smallest scale 
that can be resolved is approximately equal to the Nyquist 
frequency. Since smaller values of δj give a finer resolution, 
the value of 0.1 was used for δj in this study. By choosing ω0 
= 6, the relationship between scale and frequency is simple 
and can be obtained by the equality λ = 1.03s, where λ is the 
equivalent Fourier period, indicating that for the Morlet 
wavelet the wavelet scale is almost equal to the Fourier 
period [17]. This is a reasonable choice for ω0, since we 
prefer to detect the frequency content of the FHR. The 
frequency resolution changes with frequency: at low 
frequencies (large scales) the resolution is better than at high 
frequencies (small scales). Accordingly, the time resolution 
is better for high than it is for low frequency components.    

Based on the local minima of the time averaged wavelet 
transform two frequency intervals were determined, interval 
I (0.008-0.015 Hz) and interval II (0.015-0.04 Hz) and the 
contribution of each peak or each spectral component can be 
characterized by the time average energy density, PWi, of the 
corresponding interval i: 
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where T is the time duration of the FHR signal and p = 1/2 
was chosen in equation (3). 

B. Adaptive Approximation Analysis of the Fetal Heart 
Rate Signals 

In order to get a decomposition of the normalized FHR 
signals with real expansion coefficients and real residuals, 
real-only atoms are used of the form: 
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where si and ui are the scale and location factors for the 
Gaussian envelope, ωi and φi are respectively the frequency 
and phase of the real sinusoid within the Gaussian envelope 
and Ki is a normalization factor used to maintain unit energy 
for gγi(t). We used a dictionary composed of discrete Gabor 
functions supplemented with canonical basis of discrete 
Dirac functions and discrete Fourier basis. In this case we 
denote γ=(s,u,2πk/N), where N is the number of the samples 
of the signal, u and k are integers between 0 and N and φ∈  
[0,2π]. In order to reduce the computation, the scale s is also 
limited to an exponential relation s = 2j where j is the octave 
of the scale s which varies between zero and log2N. 
Therefore, the signal duration was always zero-padded to a 
power of two in our case, resulting to 2048 signal points. 

Since the decomposition itself does not set the number of 
iterations to perform, but sort atoms by largest inner product 
with residual, in our implementation in order to get the best 
way to decompose the signal, we studied the residual log-
energy ( log10||Rix||/||x|| ) as a function of the number of time-
frequency atoms (i.e., the algorithm’s iterations). This 
magnitude provides some help in order to get the best way to 
decompose the signal. When it has a relative fast decay for a 
number of iterations, these iterations, i.e. atoms, correspond 
to the coherent signal structures. On the other hand, when its 
decay reaches a linear behavior, which means that the decay 
of ||Rix|| is almost constant, then there are no more structures 
in the residuum coherent with the chosen directory and the 
time-frequency energy distribution map becomes very noisy 
and complicated with confusing structures, without 
providing information about the most energetic components 
of the decomposed signal. For each FHR segment we studied 
the decay rate of the residual log-energy for a predefined 
number (M=500) of algorithm’s iterations. For all the cases 
we noticed that by selecting the energy of the residue to be 
equal to the 5% of the total energy of the original FHR 
signal the residual log-energy function does not reaches its 
linear behavior. Thus, the number of the atoms that has been 
taken into account in order to decompose each FHR segment 
was m0.95: 
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where ci = <Rix,gγi> and the square of ci represents the part 
of the signal energy associated with atom gγi. Each fetal heart 
rate segment is decomposed by m0.95 atoms. This number is 



 
 

 

not necessarily the same for the FHR segments, since it 
depends on the amount of information contained in the 
signal and the coherence with the chosen dictionary. 

The Last Wave software package [18] was used for 
applying the MP algorithm. 

Since the aim of the present study is to estimate the 
prediction of fetal acidemia based on the oscillating 
dynamics of fetal heart rate variability in the very low 
frequency range we confined our study to the rhythmic and 
sinusoidal waveforms bellow 0.04 Hz. In order to quantify 
the VLF oscillating components, we estimated the total 
energy of all the atoms representing the corresponding 
activity between 0.008 and 0.04 Hz (TEMP_VLF) and between 
the two sub-intervals 0.008-0.015 Hz (TEMP_I) and 0.015-
0.04 Hz (TEMP_II) for each case. 

 

C. Analysis of the FSpO2  
For each 30-minute segment, we calculated the total time 

in which the FSpO2 was less than 30% (TSpO2<30%) [19].  
 

IV. RESULTS 
The significance of the difference between the acidemic 

and the normal group was evaluated using the Student’s t-
test. As a criterion of significance, the 95% confidence level 
(p < 0.05) was chosen. 

In order to assess the usefulness of the quantities PW_I, 
TEMP_I (since in our previous study [2] we demonstrated that 
these parameters were significantly increased in the acidemic 
group) and TSpO2<30%, as predictors of acidemia, we 
calculated the sensitivity, specificity, positive predictive 
value, negative predictive value, likelihood ratio and the area 
under the receiver operating characteristic curve. 

Moreover, in order to categorize our data based on the 
conjunction of two different parameters (PW_I with TSpO2<30%, 
and TEMP_I with TSpO2<30%), we used the K-means clustering 
algorithm. 

 
 
 
 

A. Results of each individual parameter as a predictor of 
acidemia 

Table I shows the predictive value of each parameter. 
Both TEMP_I and TSpO2<30% showed an adequate ability to 
predict acidemia, with a higher value being associated with 
acidemia. The mean value and standard error of TEMP_I and 
TSpO2<30% were 220.4 ± 38.9 and 7.2 ± 1.6 min respectively 
for the acidemic group, and for the normal group 65.0  ± 9.9 
and 1.2  ± 0.4 min respectively. The corresponding p-values 
were lower than 0.0001. The sensitivity and negative 
predictive value were high for these parameters, however the 
sensitivity of PW_I was lower, although there was a 
significant difference between the two groups (p-value 
0.002). About the specificity, TEMP_I gives the better result 
(87%).        

B. Results for each pair of parameters as a predictor of 
acidemia 

Table II shows the predictive value of each pair of 
parameters. Figures 1 and 2 illustrate the corresponding 
scatter plots. Best results are obtained by the conjunction of 
TEMP_I and TSpO2<30%. Although the sensitivity is decreased, 
the specificity is remarkably increased in relation to the 
corresponding values of TEMP_I and TSpO2<30%. 

 

V. DISCUSSION 
Fetal HRV is often used as an index of fetal health. We 
calculated the spectral estimations of the VLF oscillatory 
components of the complicated fetal heart rate by the 
continuous wavelet transform that provides variable time 
and scale resolution and the matching pursuit method which 
provides variable time, scale and frequency resolution. Both 
of these techniques indicate that the heart rate oscillations in 
the frequency range between 0.008-0.015 Hz are increased 
when the concentration of hydrogen ions in fetal blood is 
increased. However, as we have noticed, the MP method 
showed an adequate ability to predict acidemia due to the 
fact that it is superior to the WT in identifying rhythmical 
and sinusoidal oscillations of about 0.01 Hz of the highly 
nonstationary FHR, which are mainly associated with 
hormonal changes [6].  The corresponding oscillations 
reflect in the fetal heart rate the extent and the duration of 
some of the adaptive responses and oxygen transport 

TABLE I 
PREDICTIVE VALUE OF THE PARAMETRES PW_I, TEMP_I  AND TSPO2<30% 

 PW_I TEMP_I TSpO2<30% 

Sensitivity (%) 80 90 90 
Specificity (%) 61 87 81 
PPV (%) 25 53 43 
NPV (%) 95 98 98 
Likelihood 
ratio 2.0 7.1 4.7 

AUC ± S.E 0.72±0.09 0.93±0.06 0.88±0.07 
 

PPV: Positive Predictive Value, NPV: Negative Predictive Value, AUC: 
Area under receiver operating characteristic Curve, S.E.: Standard Error 

TABLE IΙ 
PREDICTIVE VALUE OF THE PARAMETRES PW_I WITH TSPO2<30%  

AND TEMP_I  WITH TSPO2<30%   

 PW_I with TSPO2<30% TEMP_I with TSpO2<30% 

Sensitivity (%) 60 80 
Specificity (%) 89 94 
PPV (%) 46 67 
NPV (%) 93 97 
Likelihood ratio 5.4 12.5 
 

PPV: Positive Predictive Value, NPV: Negative Predictive Value



 
 

 

 
Fig. 1. Scatter plot of the variables PW_I and TSpO2<30%. Numbers 1-10 
correspond to acidemic cases. Cluster 1 contains 6 out of 10 acidemic cases 
and 7 out of 63 normal ones.  

 
mechanisms of the fetus when it becomes acidemic. 

Fetal pulse oximetry seems to be an important additional 
source of information. Taken as a threshold value for FSpO2 
measurement the 30% level and calculating the time duration 
in which the FSpO2 was less than 30%, we obtained that the 
parameter TSpO2<30% showed a high sensitivity and negative 
predictive value. 

However, taking into account that one of the main 
problems of the obstetricians is that the suspicious FHR 
patterns lack specificity and the increased false positive rate  
may result in unnecessary interventions increasing the 
caesarian section delivery rate, it appears that the 
combination of FSpO2 and the MP analysis of the FHR may 
help to overcome this problem, since it shows a very good 
specificity (94%). 
 

 
Fig. 2. Scatter plot of the variables TEMP_I and TSpO2<30%. Numbers 1-10 
correspond to acidemic cases. Cluster 1 contains 8 out of 10 acidemic cases 
and 4 out of 63 normal ones.  

VI. CONCLUSION     
The results of the analysis of our data demonstrate that the 

analysis of the fetal heart rate by the matching pursuit and 
the fetal pulse oximetry recordings may provide additional 
source of information about fetal status and to alert the 
clinician to decide under objective conditions when and how 
to perform the delivery. However, further evaluation is 
mandatory to evaluate its efficacy and reliability in order to 
be part of a system that could recognize early the fetal 
acidemia. 
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