
 
 

 

Unsupervised Cluster Analysis Using Particle Swarms for 
Oculographic Signal Segmentation 

Martin Macaš, Lenka Lhotská, Member, IEEE, and D. Novák 

 

Abstract—The problem of real-world signal segmentation is 
very often difficult because of artifacts and noise. Furthermore, 
for each signal, a special method using supervised adaptation 
for every concrete type of segment must be mostly used. 

This paper proposes fully unsupervised approach using 
partitional clustering method with squared error criterion. The 
optimal partition is searched through the use of particle swarm 
optimization (PSO), which makes it possible to overcome local 
minima and find the near-optima solution with relatively good 
computational efficiency.  

First, the PSO clustering is tested using an artificial 
benchmark data set and then, practical results of the method 
on electrooculographic (EOG) signal segmentation are 
described. 

I. INTRODUCTION 
HE medical domain is one of the areas in which 

Artificial Intelligence (AI) and machine learning 
methods are most frequently applied. This is quite natural 
because modern medicine generates huge amounts of data, 
but at the same time there is often a lack of explicit relations 
among this data and a lack of data understanding. In 
particular, data mining and knowledge discovery are tools 
than can help in dealing with this problem. In the medical 
domain, data exists in various forms - single numerical 
values, non-numerical expressions, measured signals (e.g. 
ECG, EEG, EMG, EOG). Therefore it is necessary to pre-
process and transform the data into the most suitable form to 
serve as an input for a decision support system or a 
classification system.  

 Many data mining techniques applied to signals need the 
investigated signal to be fully or at least partially segmented 
to parts with similar characteristics and interpretation. This 
segmented signal is further processed using other multiple 
data processing methods leading to higher level 
interpretations, results and conclusions [1]. 

A common approach is to find the interesting parts of the 
signal using pattern classification methods that utilize 
supervised information depending strongly on signal 

character. Another approach is to detect some characteristic 
and significant parts of the signal. For example, time-
frequency analysis can be applied using spectrograms or 
wavelet transform and the segmentation can be based on 
analysis of some properties of the time-frequency domain of 
the signal. Similar approach is based on splitting the time (or 
often frequency) domain of the signal into smaller windows, 
called segments, and describe each part using some 
extracted features [2]. However, the notion of segment is 
here different. 
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In this paper we describe a similar approach. Individual 
parts of the signal are characterized by real valued features 
and the resulting set of samples is partitioned into groups 
using a clustering method based on Particle Swarm 
Optimization (PSO) algorithm. The signal is segmented 
according to the resulting division into the corresponding 
groups, where each group represents certain type of 
segments, thus a certain cluster. 

First, the PSO clustering technique is tested and verified 
on well-known artificial benchmark "IRIS" data-set. Further, 
the clustering method is applied to real data extracted from 
electrooculographic (EOG) signals. The PSO approach is 
compared with k-means algorithm. 

II. METHODS 

A. Particle Swarm Optimization 
The PSO method is one of optimization methods 

developed for searching global optima of a nonlinear 
function [3]. It is inspired by the social behavior of birds and 
fish. The method uses group of problem solutions. Each 
solution consists of set of parameters and represents a point 
in multidimensional space. The solution is called particle 
and the group of particles (population) is called swarm. 

Each particle i is represented as a D-dimensional position 
vector ixr  and has a corresponding instantaneous velocity 

vector ivr . Furthermore, it remembers its individual best 

value of fitness function and position  which has resulted 
in that value. During each iteration t, the velocity update rule 
(1) is applied to each particle in the swarm. The

ipr

gpr is the 

best position of the entire swarm and represents the social 
knowledge. 
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The parameter α is called inertia weight and during all 

iterations decreases linearly from αstart to αend. The symbols  
R1, R2 represent the diagonal matrices with random diagonal 
elements drawn from a uniform distribution between 0 and 
1. The parameters φ1 and φ2 are scalar constant that weight 
influence of particles’ own experience and the social 
knowledge. 

Next, the position update rule (2) is applied: 
 

)()1()( tvtxtx iii
rrr

+−= . (2) 
 
If any component of  is less than -V)(tvi

r
max or greater 

than +Vmax, the corresponding value is replaced by -Vmax or 
+Vmax, respectively. The Vmax is maximum velocity 
parameter. 

The update formulas (1) and (2) are applied during each 
iteration and the and values are updated simulta-

neously. The algorithm stops if maximum number of 
iterations is achieved or any other stopping criterion is 
satisfied. 

ipr gpr

B. PSO Clustering 
Data clustering is an important process in pattern 

recognition and machine learning that identifies natural 
groupings or clusters within multidimensional data based on 
a similarity measure. Clustering algorithms are used in many 
applications, such as image segmentation, vector and color 
image quantization, data mining, etc. Most clustering 
algorithms are based on two popular techniques known as 
hierarchical and partitional clustering. Formal partitional 
clustering procedures use a criterion function, such as the 
sum of the squared distances from the cluster centers, and 
seek the grouping that extremizes the criterion function [4]. 
Such optimization task could be solved using evolutionary 
optimization algorithms [5]. In this paper, the PSO approach 
is compared to k-means algorithm. That is why it was 
suitable to use the same criterion - the sum of squared errors. 

Suppose that we have a set D of n samples x1,...,xn that we 
want to partition into c disjoint clusters D1,...,Dc. The sum of 
squared error criterion is defined: 
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is the mean of samples from cluster i. 
As it was mentioned above, the PSO clustering method 

was used here. The algorithm finds the centroids of a user 
specified number of clusters, where each cluster groups 
together similar patterns. In the context of data clustering, a 
single particle represents the c cluster centroids. That is, 
each particle ixr is constructed as c sequentially organized 
vectors of centroid positions. 

Then, a swarm represents a number of candidate data 
clusterings (partitions). The quality of each particle is 
measured using function described in (3). A solution, which 
corresponds to the minima of the function is searched. 

C. Signal Segmentation 
Most of the real signals belong to stochastic signals. 

Stochastic signals can be divided into two basic groups, 
namely stationary and non-stationary signals. Stationary 
stochastic signals do not change their statistic characteristics 
in time. Non-stationary signals may have variable quantities 
in time, for example mean value, dispersion, or frequency 
spectrum. Such signals are considered stationary whose 
statistic parameters remain constant over sufficiently long 
time. 

To avoid the problems with signal non-stationarity, the 
signal was divided into parts of constant length and each 
part was further described using feature extraction 
procedure. This method is often called segmentation, but in 
different meaning.  

However, a disadvantage of this method is that the 
resulting parts are still not necessarily stationary. Our 
modification suggests to use overlapping of individual parts. 
Using small shift and suitable length of these parts, we can 
reach very good results for correct division directly into 
individual characteristic parts having natural interpretation. 

As it was mentioned above, the cluster analysis searches 
some clusters of multidimensional data samples. Therefore, 
the data must be first extracted from the investigated signal. 
In this paper, constant segmentation was used. 

Afterwards, a number of features was extracted from each 
part. The feature extraction procedure for the case of EOG 
signals is described in the next section.  In this way, a data 
matrix was created, where columns correspond to features 
and rows represent particular parts of signal - samples. The 
unsupervised cluster analysis was further applied to the data 
matrix and each row (part of signal) was labeled according 
to its belonging to one of the clusters. Because of overlap of 
signal parts, each sample of signal could fall into more than 
one cluster. 

The final classification was done in such a way that each 
sample was classified as member of the cluster into which it 
fell in most cases. The described process split the whole 
signal into c segment types with different patterns and 
hopefully with different interpretation - the unsupervised 
segmentation was done. 



 
 

 

D. EOG Application 
The human eye is never in entire calm. Its movement is a 

consequence of an ophthalmogyric muscle's work. There are 
two main kinds of eye movements - the big and the small. 
Saccades are rapid eye movements which allow binocular 
turning or version of the eyes from one fixation point to 
another. During these conjugated and volitional movements, 
the eye is browsing a visual field. The direction and the 
magnitude of the saccade can be influenced willingly.  

The saccade alternates with the period of fixation made 
when the eyes are directed to a particular target. Fixation is a 
state in which the eye is not moving and the visual stimulus 
is perceived. However, even at fixation the eye is not 
completely motionless. It performs small movements 
(microsaccades, drifts, tremor). 

Sequences of fixations and saccades (rapid eye 
movements between fixations) define scanpaths, providing a 
record of visual attention on a subject of interest. 

The recording of EOG signals during eye movements (eye 
tracking) finds many applications - for instance advertising, 
industry, biomedical engineering, or medical diagnostics. 
For these purposes, it is very important to find the particular 
components of signal. In fact, this process results in 
segmentation of EOG signal into parts with similar 
interpretation - fixation, saccades, and others.  

The resulting segmentation could be used for statistical 
description of the signal or subsequent analysis. The EOG 
signals have big diagnostic potential. For example, the 
automatic segmentation and its results are useful for analysis 
of eye movements of dyslexic children [6]. Although the 
connection between dyslexia and eye movements has been 
examined in several studies, it is still not clear, if this 
connection exists. The functional significance of eye 
movements is far from being understood. Few studies 
carried out comparison between eye movements of dyslexics 
and matched control subjects. Many properties of dyslexic's 
eye movements were described, adverting to diagnostic 
potential of eye movements. Subjects with reading 
difficulties make a higher percentage of regressive eye 

movements during reading than normal readers, there could 
be also differences in length of fixation or directions of 
saccades. It could be possible, that the children with 
dyslexia have some specific patterns occurring in eye 
movement record. However, all these ideas are just 
hypotheses and in fact, the neurologists do not know what 
sort of patterns to look for. That is why the unsupervised 
approach to segmentation could be suitable and promising. 

The eye movements of 76 female subjects were recorded 
using iView 3.0 videooculography system at the Department 
of Neurology, 2nd Medical Faculty, Charles University, 
Czech Republic. Only 52 of the 76 measured subjects were 
used for subsequent experiments because of difference in 
age or poor quality of signal records of the remaining 
subjects. There were three types of subjects - normal 
readers, retarded readers without dyslexia and dyslexics. 
The measurements were executed in dark. Subject with 
fixated head looked at a stimulus on the screen. The screen 
was placed 1 meter from the subject. Subjects were 
stimulated by a non-verbal stimulus consisting of bitmap 
picture - Fig. 1. The child was asked for browsing through 
dots on the screen and its horizontal and vertical eye 
movement signals were measured. 

Let S=s(1),s(2),..s(L) denotes the part of signal consisting 
of L samples. The feature extraction procedure computes a 
set of numbers describing the part of signal. The choice of 
suitable features has fundamental influence on results of 
clustering and final segmentation. During designing the 
feature set, the user can use some prior knowledge about the 
investigated signal and expected properties of the results. An 
example is the EOG signal segmentation. It is generally 
known, that the saccades and fixations differ in velocity. 
That is why the first feature F1 was the average of absolute 
value of differences: 

 
Fig. 1.  The stimulus used for eye movement recording with XY plot 
of the EOG signal. 

 

∑
=

−−=
L

i

isis
L

F
2

1 )1()(1
. (5) 



 
 

 

The other features used in this paper were coefficients of 
2nd order autoregressive model estimated by the use of  
covariance method [7].  

The definition of the model is s(t)=a1s(t-1)+a2s(t-2)+ε(t), 
where ε(t) is assumed to be Gaussian white noise. The other 
features are thus F2=a1 and F3=a2. 

As it was mentioned above, both the vertical and 
horizontal component of eye movement signals were 
recorded. The described features were extracted for both of 
them. Thus, the three features were extracted for each 
component, which gives in total 6 features describing one 
part of the two-dimensional signal. 

III. RESULTS 

A. Testing The PSO Clustering 
The suitability of the PSO approach to clustering was 

tested using the Iris data set. This well-known benchmark 
set has three subsets (i.e. Iris setosa, Iris versicolor, and Iris 
virginica). There are in total 150 data points in the data set. 
Each class has 50 patterns. The PCA plot of first two 
principal components is depicted in Fig. 2. The PSO 
clustering and k-means were compared using the Iris data 
set. The comparison can be done easily because both 
clustering approaches used the same criterion - the sum of 
squared errors. The second comparison criterion was the 
classification performance. It measures, how the samples 
(patterns) from one particular class are distributed in 

resulting clusters.  We resolve the correspondence they have 
to the true cluster labels of the patterns. Ideally, each cluster 
should contain patterns that belong to only one class. The 
data were not normalized, because the clustering criterion 
was not scale invariant. 

During each run, both algorithms were initialized 
randomly. The PSO parameters were set experimentally as 
following. Inertia weight was decreasing linearly from value 
α=1 down to the value α=0.3 during first 80% of iterations. 

Next, it stagnated on constant value. Parameters φ1 and φ2 
were set to 2 and the maximum velocity was Vmax=1.  The 
swarm with 20 particles and 40 iterations of PSO algorithm 
were used for all experiments. The same settings were used 
also for all experiments in the following section.  

Fig. 3 shows the results of 30 runs of experiments with k-
means and PSO. For each value of clustering criterion 
reached during the 30 runs, the relative occurrence is 
depicted here. The classification performance in percents is 
added to each column demonstrating a correspondence (or 
non-correspondence) of clustering criterion and 
classification. 

It can be considered that the global minimum of the 
criterion is in the value 67.56%. The value was reached by 
both the k-means and PSO clustering during more than fifty 
percents of the runs. The rest of the results show the 
difference between the two algorithms. The k-means 
reached the global optima relatively often and about third of 
the runs finished near the global extreme, however, 4 of 30 
runs got stuck in very poor local optima where the criterion 
value was 85.18. 

The PSO approach exhibited its ability to reach global 
optima. All runs of experiment converged to near vicinity of 
the criterion value Je= 67.56 and all non-optimal results are 
distributed much more uniformly than in the previous case. 
Therefore, it can be concluded that the PSO approach had 
problems with accurate reaching the global optima which is 
given by stochastic component of the searching. In 
comparison with k-means, the PSO searching probably did 
not find a strong local minimum and only due to small 
number of iterations (40) it did not find the global optima 
exactly. 

Fig. 3 tells also something about the classification results. 
It is clear, that the classification performance for this task 
should correspond to the clustering performance. The result 
for k-means shows, that if the poor local optima was 
reached, the classification was also quite poor. However, the 
classification did not correspond to clustering in very near 

TABLE I 
COMPARISON OF CLUSTERING RESULTS 

 Method 
 k-means PSO 

Patient 1 Mean Std Mean Std 
Fixations (%) 80.63 33.62 100.00 0.00 
Saccades1(%) 85.45 32.09 100.00 0.00 
Saccades2(%) 80.00 42.00 100.00 0.00 

Criterion 134.8
1 

7.47 130.52 0.83 

Sufficient 
iterations 

- - 19.90 9.99 

Patient 2 Mean Std Mean Std 
Fixations (%) 91.67 6.00 100.00 0.00 
Saccades1(%) 100.0

0 
0.00 100.00 0.00 

Saccades2(%) 52.00 38.00 100.00 0.00 
Criterion 107.4

0 
6.54 102.87 0.00 

Sufficient 
iterations 

-  10.90 6.30 
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Fig. 2.  The plot of first two principal components of the testing IRIS 
dataset. 



 
 

 

vicinity of the global extreme. It could be justified by 
unsupervised character of clustering. The goal was not to 

reach the best classification, but to find the best clustering. 
 

B. EOG Signal Segmentation 
The results of EOG signal segmentation are described in 

this section. The PSO clustering technique is compared to k-
means method using quality criteria. The main and most 
important criterion is the value of sum of squared error of 
clustering described by equation (3). The comparison can be 
done because both clustering approaches used this criterion. 

The second comparative evaluation is the ability of the 
technique to reliably detect particular components of the 
signal and assign the signal segments to proper clusters. 
Nevertheless, the approach is unsupervised and we do not 
know, if optimal value of clustering criterion gives upon a 
segmentation corresponding to our idea (to separate 
fixations and saccades), hence this performance evaluation 
is the secondary one. The segmentation was performed 
using three clusters and splitting the signal into three parts 
with different interpretation. The first component are 
fixations - small eye movement appearing like a skein or 
smudge in X-Y graph. The remaining part of eye 
movements should be composed of saccades. Two sorts of 
saccades should be present in signals corresponding to the 
stimulus described above - the between-dot saccades 
(Saccades 1 in Table 1) appearing during moving the eyes 
from one dot to another and the between-row saccades 
(Saccades 2) appearing when the eye is moving between 
different rows. 

For the method comparison, two horizontal and vertical 
signals measured on two different patients were used and 30 
runs of the segmentation was repeated for each case. The 
Table 1 shows the percentage share of correctly segmented 
fixations and saccades of type 1 and 2. 

As it was mentioned above, there are differences between 
basic parts of the EOG signal. Typical descriptive features 
of saccades are amplitude, velocity maximum, length, and 

latency. There is a relation between amplitude, length and 
velocity maximum that is characteristic and can be used for 
evaluation.  

The signal segmentation is a crucial aim of the whole 
process. We understand under segmentation following 
operation. Segmentation is division of the set of signal 
samples X(i), i=1...N into certain number of disjunctive 
subsets, in our case into 3 disjunctive subsets X1,X2,X3, 
where XXXX =321 UU . Individual subsets contain 
compact parts of the signal with the same or at least partially 
the same interpretation. Then we denote these compact parts 
as segments. Segment type or class is membership in one of 
the three subsets X1, X2, X3,.  

Correctly segmented fixation is such signal segment that 
a) belongs to one certain subset; b) corresponds to the main 
characteristic features describing fixation, and c) is 
separated on both sides with segments of other types (type 
saccade 1 or saccade 2). The definition of correctly 
segmented saccade is analogical. 

During each run, both algorithms are initialized randomly. 
The PSO parameters were set experimentally as following. 
Inertia weight was decreasing linearly from value α=1 down 
to the value α=0.3 during first 80% of iterations. Next, it 
stagnated on constant value. Parameters φ1 and φ2 were set 
to 2 and the maximum velocity was Vmax=1.  The swarm 
with 20 particles and 40 iterations of PSO algorithm was 
used for all experiments. 
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Fig. 3.  The histogram of clustering criterion values obtained from 30 
runs. 

Table 1 shows principal differences and advantages of 
PSO approach. The signals of two patients were used for 
comparison. First, it must be remarked, that the global 
minima of the clustering criterion for the two patients were 
Jemin1=130.25 and Jemin2=102.87 respectively. The average 
values of this criterion illustrate the main advantage of PSO 
arising from evolutionary character of this technique. It is 
evident, that the PSO is much less sensitive to random 
initialization than k-means. The global searching PSO 
method found the global minima Jemin in 90% of runs for 
Patient 1 and in all runs for Patient 2 and even if it did not 
approach the global minima accurately, the result could be 
supposed to be close to the global extreme. On the other 
hand, the k-means gave us quite different results. The big 
standard deviation indicates the disability of the algorithm to 
overcome local optima, which results from local character of 
the k-means method. Many runs finished in one of many 
shallow local minima and the resulting non-optimal 
segmentation did not matched our requirements consisting in 
similarly interpreted components separation. An example of 
such non-optimal segmentation using k-means clustering for 
the Patient 1 is depicted in Fig. 4. The segmentation 
corresponding to global optima Jemin1=130.25 obtained 
mostly when the PSO clustering was used is shown in Fig. 
5. The three main components of eye movements are 
separated perfectly except the cluster 3 – between row 
saccades, into which some abnormal saccades are included.  



 
 

 

IV. DISCUSSION 
From the experiments we can conclude that PSO 

clustering is suitable for such tasks in which the 
interpretation and meaning of clusters is not obvious and 
transparent.  

PSO has also another advantage, namely it has better 
ability to reach global optimum and is not too sensitive on 

local optima. Another conclusion that can be obtained from 

the Table 1 are the convergence properties of PSO 
algorithm. The table shows the average number of iterations 
after which the global minimum was reached. Although, the 
algorithm is one of the evolutionary techniques and its main 
general drawback is the high computational cost, its 
convergence in this application is relatively fast. For the 
Patient 1, 26 iterations and for the Patient 2, 24 iterations 
were enough for reaching the global optima. For some 
particular runs, even 3 iterations were enough. 

V. CONCLUSIONS 
We investigated the possibility of applying the PSO to the 

field of biomedical signal processing. We presented a 
clustering approach using PSO. The proposed algorithm was 

applied to the problem of unsupervised classification of 
EOG signal. The performance of the algorithm was 
compared to the k-means algorithm. The PSO clustering 
outperformed the k-means algorithm.  

The experiments presented here used the given number of 
clusters c=3. However, using additional clusters could 
enable to detect (and remove) artifacts or perform more 
detailed classification of fixation subtypes and saccade 
subtypes, possibly identifying new  descriptive features that 
will characterize each subtype better. 

However, there is still open space for further 
improvements. They may include, for example, adaptation 
of the basic PSO to the clustering task, extensions of basic 
PSO algorithm or the use of some alternative clustering 
criterion.  0 200 400 600
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Fig. 4.  An example of k-means result corresponding to local minima.  

Finally, we must remark, that although the presented 
approach was applied on EOG signals, the same method 
could be used for other biomedical signals - to detect beats 
in ECG, to find spikes, sleep spindles and other patterns in 
EEG and, of course, to detect (and remove) some artifacts 
from signals. However, such applications would need 
different features to be extracted. 
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