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Abstract – A model of navigation inspired by rodent 

hippocampus stores several navigational maps in a single 

attractor (Hopfield-like) neural network. Hippocampus is a 

part of brain involved in spatial orientation. It models such 

phenomena as place cells, long-term potentiation, long-term 

depression, path integration, inhibitory interneurons etc. 

Structure of the model conforms to functional schema of 

hippocampal formation. In order to validate the model we’ve 

developed a spatial task within a complex maze: an animat has 

to follow a complex trajectory passing gateways between 

chambers and avoiding barriers. We compare the model to 

hippocampus and we discuss simplifications we’ve committed. 

I INTRODUCTION 

patial navigation or rodents is a subject of intensive 
research. Moreover, artificial models – animats – have 

been introduced as well. As a result of our preceding research 
we published a model [4] of navigation within a single 
environment inspired by Morris water maze [9]. Herein we 
remain in line with our previous work and we propose a 
model of navigation within a maze of several chambers. We 
introduce a biologically inspired method of storing several 
navigational maps in a single artificial neural network. 

II HIPPOCAMPUS – BIOLOGICAL BACKGROUND 

Hippocampus plays a central role in navigation, especially 
in memory formation and recall. An indication that 
hippocampus maintains a spatial information was described 
in [12]. Responsibilities of rat hippocampus for spatial 
memory have been found out on experiments [13], [9], or [3]. 

Hippocampal place cells [10] fire when a rat appears in a 
corresponding place of environment, referred to as a place 
field. Their firing doesn’t depend on rat’s heading in open 
arenas, though directional dependency is observable in radial 
mazes. It is neither dependent on rat’s intention [19]. A place 
field, in some environment, has around 30% of neurons 
located in the hippocampus proper. In an arbitrary position, 
around 1% of hippocampal cells are active [17]. Place cells 
are implemented by extensive network of pyramidal cells and 
inhibitory interneurons in regions CA3-CA1 of hippocampus. 
Activity of the place cells persist even in dark [11]. Their 

 
 
Manuscript received September 4th, 2006.  This research has been 

supported by projects CTU0607513 "Knowledge Mining for Modeling of 
Cognitive Processes" and 1ET101210513 “Information Society”. 

M Bures is with the Gerstner Laboratory, Department of Cybernetics, 
Czech Technical University in Prague, Karlovo nám�stí 13, 121 35, 
Prague 2, Czech Rep. (phone: +420 224 357 666; fax  +420 224 357 666; 
email: buresm2@fel.cvut.cz; web: http://gerstner.felk.cvut.cz/). 

M. Jirina is with the Faculty of Biomedical Engineering, Czech 
Technical University in Prague (email: jirina@fbmi.cvut.cz; 
web: http://www.fbmi.cvut.cz/). 

activity is discoverable just after entering a novel 
environment [17]. Place fields of a place cell in distinct 
environments aren’t correlative [17] – there is no algorithm 
to predict a place field in a novel environment, even if place 
fields from other environments are known. Changes such as 
scaling the environment result in a partial remapping of place 
cells [10]. Remappings are observed when a barrier is placed 
onto the floor. Cells near the barrier have their discharging 
suppressed whereas others remain. 

On the other hand, activity of head-direction (HD) cells 
[20] is tuned by heading of the animal. The HD neuron 
discharges only when the animal is heading in neuron’s 
preferred direction, regardless of the animal’s location. HD 
cell’s activity spans 100˚ [21]. 

Recently, grid cells [6] were discovered in 2005. They are 
posed in medial entorhinal cortex, one synapse upstream of 
the place cells. A grid cell fires strongly when an animal is in 
specific locations in an environment. In contrast to a 
hippocampal place cell, a grid cell has multiple firing fields 
with regular spacing. 

From behavioral studies it is clear that animals involve 
path integration [8], namely the dead-reckoning method. 
However, its exact location in the brain is not clear. Animals 
process signals coming from vestibular system (providing 
information about both straight-lined and angular 
acceleration), from receptors in muscles (registering changes 
of distinct parts of the body) and from brain motor cortex (it 
is supposed to send copies of motion signals). 

Mechanisms that underlay learning in long-term memory 
are long-term potentiation (LTP) and long-term depression 
(LTD) in conjunction with theta precession [14]. LTP is 
believed to contribute to synaptic plasticity in living animals, 
providing the foundation for an adaptable nervous system. 

III MODEL 

A Spatial Task 

The world our animat has to move through is a maze of 
several chambers. There are narrow gateways between 
certain chambers. Each chamber contains several cues 
distinguishable by symbols. In order to recognize current 
chamber and its location in it, the animat detects position of 
all cues in the chamber. Whereas the set of cue symbols is the 
same in each chamber, animat can distinguish individual 
chambers by standing (distances, order etc.) or appearance of 
the cues. Every symbol appears at most once in a chamber. 

Animat describes each chamber by a separate chart. All 
charts are stored in a single attractor neural network. After 
entering a familiar chamber the animat recalls the 
corresponding chart and detect position in it. This is based on 
the sensory inputs and path integration. 

S



B Design 

Structure of the model (fig. 1) conforms to functional 
schema of hippocampal formation. Each subsystem consists 
of an artificial neural network. Sensory inputs (SI) gather and 
process allothetic information from the environment. Position 
recognition (PR) subsystem detects actual animat’s position 
and selects appropriate map. Position of the animat is coded 
by both head direction (HD) system and place cells (PC). The 
path integrator (PI) updates supposed location during 
locomotion. Navigational maps (NM) of chambers are being 
developed during learning phase. Reading in the current map 
is role of the locomotion control (LC) subsystem. It sends 
motor (Mo) signals that are also received by the PI and HD 
subsystems. NM is the only plastic subsystem modified by 
the learning process, whereas the others are pre-wired. 

SI PR PC 

HD 

NM 

LC 

Mo 

PI 

R

 

Fig. 1.Structure of the model: sensory inputs (SI), position recognition (PR), 
head direction (HD), place cells (PC), path integrator (PI), navigational 

maps (NM), learning signal (R), locomotion control (LC) and motor (Mo). 

C Allothetic Inputs 

Allothetic sensory inputs (SI) detect position of 
environmental cues relative to the animat. We pose several 
point cues [15] inside the maze. Neither chamber boundaries 
nor any other objects in the environment are detected. 

We simulate SI by a pre-wired one-layer RBF neural 
network. Activity of SI neurons is given by distance of the 
cue from the animat 

 

2

2

2

)(

σR

RR

R

i

i

eA

−
−

=
, (1) 

where Ri is nominal distance of SI distance-sensitive neurons, 
R represent current distance of the cue from the animat and 
R� govern dispersion of elements of the RBF network. 

For each cue symbol, a separate group of SI neurons 
exists. All cues in the current chamber are detected by the 
animat simultaneously, regardless of their position or 
direction of the animat’s heading. Cues in other chambers are 
invisible for the animat. A similar highly processed signal is 
supposed to enter the rodent’s hippocampus [15]. 

D Head Direction System 

The resulting activity of the HD cells is given by 
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where � is animat’s heading, �i is preferred direction of HD 
cell i and KHD governs amount of active HD cells. It should 
be chosen with respect to fact that every. We focused on this 
subsystem in detail in our previous work [4]. 

E Place Cells 

We simulate the hippocampal place cells (PC) as a pre-
wired attractor neural network consisting of several charts. In 
each chart, each place cell has its own place field. The closer 
place fields of two place cells in a particular chart the 
stronger linkage between the two cells. Distant cells have no 
linkage between each other. 

Partial weights between PC for each chart c are 
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where Xi;c and Xj;c are place field centers of neurons i and j in 
chart c and dist(.) computes Euclidean distance. 

The last term in (3) is a distribution weight function g(.). It 
links two neurons the strongly the place fields are closer. For 
more distant place fields, we request a nearly zero link. 
We’ve chosen a simple Gaussian-like function. However, one 
could use a linear function with saturations as well. 

Place fields of a single place cell in different charts don’t 
correlate. Synaptic weights between two place cells are given 
as a summary of all partial weights values in each chart (C is 
the number of charts): 
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The attractor network maintains an activity packet, a set of 
place cells with close place field that fire altogether, selecting 
a single chart as being active.  Calculations of the maximal 
number of stored uncorrelated spherical attractor charts in a 
Hopfield-like network give the number of 0.0042xNPC [16]. 

The output of the PC subsystem is given by 
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where �(.) is a sigmoid function discussed later, W
PC is a 

synaptic matrix of the PC subsystem, V
PC represents 

influence of the PR (and is mostly zero) and parameter KPC 
works similar as a gain in a loop-back system. WPI(t) is path 
integrator modulation matrix (10). It’s zero when the animat 
isn’t moving. We shall discuss it further. 

The equation (5) provides a simple mechanism to control 
activity of the network: whenever the activity of the network 
becomes higher, the denominator of (5) becomes high as well 
and it causes attenuation in the network, and vice versa. It 
simulates role of inhibitory interneurons. 

We have found a value of the parameter KPC as a 
minimum of quadratic norm of difference between several 
(nc) iterations of the network: 
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We use a modified sigmoid function �(.) similar to that 
presented in [21]: 
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This function shows a better accordance of the resulting 
activity to experimental data than in case when using usual 
sigmoid or hyperbolical functions. 

F Path Integrator 

Whereas PC store animat’s supposed position, the path 
integrator (PI) moves animat’s supposed position with 
respect to locomotion signals. The animat updates its 
supposed position in a chamber without processing any 
sensory information for a limited time period, because it 
would be a time-consuming operation. After elapsing a 
period of time or entering another chamber the animat 
corrects differences between real and supposed positions. 
That time the sensory information is being processed. 

PI consists of four pre-wired matrices WPI-N, WPI-S, WPI-E 
and W

PI-W to move the coded location to the four cardinal 
points. As in case of PC, we have partial weights values for 
each chart 
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and the resulting synaptic weights are given by a sum 
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Symbols BN,S,E,W
c represent unit vectors in directions of the 

cardinal points with respect to the particular chart. 
In fact, we model PI as a modulation of synapses between 

place cells. The path integrator modulation matrix W
PI(t) is 

defined as 

 W
 PI

(t) = vS(t)W
S + vJ(t)W

J + vV(t)W
V + vZ(t)W

Z,  (10) 

where vN,S,E,W(t) are animat’s velocity components: 

( ))sin(,0max θ=Nv , ( ))sin(,0max θ−=Sv , (11) 
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where � is animat’s heading. Animat’s speed is constant. 
Synapses between HD and PI select one or two PI groups. 
This mechanism shifts the supposed position to any direction. 
Activity of PI cells is triggered by motor (Mo) signals. 

G Navigational Map and Locomotion Control 

The navigational map (NM) is built upon the PC during 
the learning phase. Consider two grids of neurons. The first is 
the formerly presented PC system. The second is a duplicate 
of the first one where the map will emerge. Initially, the 

neurons in the latter grid code actual animat’s location, as the 
PCs do. During the learning phase the position coded by the 
NM grid shifts in sense of the learned trajectory. Hence, 
difference between PC and NM determines learned direction. 

The learning process is based on the long-term 
potentiation (LTP) and long-term depression (LTD) [14]. 
Each step, we compute a potential of every NM cell as 
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where kd-NM is the decay factor in range 0 to 1, and ANM(t) is 
an activity of the NM-cells. 

Whereas the PC-to-PC synapses W
PC remain fixed, the 

NM-to-NM synapses WNM change during the learning as 
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Let i is an index of the postsynaptic cell and j index of the 
presynaptic one. Change of the synapse between two NM 
cells is proportional to the potentials of each cell. If the 
potential of the presynaptic cell is bigger then the potential of 
the postsynaptic one, the synapse reinforces. It happens as the 
presynaptic cell fires sooner then the postsynaptic one. In 
reverse case, the synapse weakens, but this influence is �-
times smaller (we choose values of the � parameter in range 0 
to 1). This parameter is more comprehensively discussed in 
[2]. The first term in (13) is a function r(t) – the learning 
signal. The learning process described above is proceeding 
only in case of the non-zero r(t). The signal is has a positive 
value during the learning phase. 

Locomotion control (LC) subsystem decodes the NM. 
Direction of the next animat’s step is computed by comparing 
NM cells activity with PC activity. If NM is learned enough, 
both activities significantly differ and right movement 
direction can be determined; animat is exploiting its NM. If 
both subsystems coincide, the map is not suitable for the 
navigation and animat’s direction remains unchanged so that 
exploration is performed. 

H Place recognition 

As with the experiments held on living animals and with 
respect to our previous model [4], we expect the animat to 
get around a familiar environment. Hence, we simulate the 
exploration phase by pre-learning synapses from SI 
downstream to PC. We iteratively pose the animat to places 
in chambers and update the synapses as 
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where A
SI is output from SI and rd is decay factor. When 

animat is familiar with the environment, PR output is 
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IV EXPERIMENTS AND RESULTS 

A Experimental Setup 

Our system contained in sum nearly 10.000 neurons. We 
modeled SI by creating 16 distance-sensitive neurons for 
each of the 4 different cue symbols. The cues marked as A, 
B, C and D were posed in the corners of each chamber. The 
HD system was simulated by NHD=100 neurons. PC formed a 
grid 40x40 neurons (NPC=1600) containing C=4 charts (even 
if theoretical capacity should be C~6). The largest part, PI, 
consisted of 4xNPC = 6400 neurons. NPC (1600) neurons were 
also used for PR. Additional neurons were used for LC, 
activity control of the network etc. 

For function �(.) defined by equation (7) following 
parameters were chosen: threshold b=0.3 and 

a= ( ) be −− 11ln 1 =0.7733 for normalization �(1)=1 and 

�(0)�0. We set other parameter values to KHD=8.1, 
KPC=0.039, �=0.7, kd-NM=0.7, KV-PC=0.11 and rd=0.01. 

The place cells were mapped to an area of 120x120 units. 
Nominal distances of SI cells were Ri=(0; 2; 4; 8; 12; 20; 30; 
40; 50; 60; 70; 80; 90; 100; 110; 120; 140) and dispersion 
R�=10. Speed of the animat was constant v=3 units. 

B Place Recognition and Place Cells 

An activity packet should emerge after entering a familiar 
environment in the map corresponding to the chamber it has 
been mapped to during exploration. In other words, after 
placing the animat to an arbitrary position in a chamber, it 
should recognize its position within the chamber as well as 
the actual chamber it has been placed in. 

We arbitrarily placed the animat into a chamber and 
waited a number of iterations of the (5) till the activity packet 
remained stable. We discovered that 10 iterations were 
enough to stabilize the activity packet. During 100 trials, the 
animat didn’t ever miss the chamber and mean square error 
of estimates of its position was 4.1 units. 

Further, we compared shapes of activity packets emerged 
in networks with one and more maps stored in it. You can 
look through the results at fig. 2. Although the activity packet 
emerged in a multi-chart PC subsystem was a bit rustled, its 
shape was evident. 

 

Fig. 2. Activity packets emerged in PC subsystem with a single chart 
(upper), with C=4 charts as in other experiments (bottom). 

C Spatial Task 

In order to validate our model, we developed a simple 
spatial task (fig. 3). The animat has followed a trajectory 
introduced by a teacher during a learning phase and it is 
supposed to recall the trajectory by its own. The trajectory 

goes through several chambers passing the gateways between 
them and avoiding obstacles in them. 

Two of resulting spatial maps are drawn at fig. 4 together 
with the trajectories passed within the chambers. As you can 
see the maps don’t interfere with each other. Moreover, the 
map not mapped to any chamber (fig. 5) remained still pure 
and ready to learn. No consistent trajectory was written there.  

 

  

Fig. 3. The maze consisted of 3 chambers interconnected by gateways. The 
chambers were distinguishable by its size and posing of the cues. Barriers 

were present in some chambers. 

 

   
Fig. 4. Trajectories passed with a teacher during learning phase (gray line) 
within the chambers (black rectangles denote boundaries of the chambers) 
and resulting spatial maps (arrows): the middle chamber (left map), the last 
chamber (right map). Arrows point towards coded direction and their size is 

proportional to relative strength of information within the chart.  

 

 

Fig. 5. A pure map not influenced by learning. As in fig. 4, arrows point 
towards coded direction. No useful information is coded in the map. 

V CONCLUSION 

We have presented a bio-inspired model of navigation 
capable to operate in a maze of several chambers. We have 
shown that our attractor neural network is capable to store a 
number of independent charts. Moreover, the charts may be 
interconnected by gateways so that the animat can proceed 
from one to another. 



The algorithm is both robust and efficient: whereas it 
stores more maps into a single network, the information is 
coded by an ensemble of neurons so that a failure of a single 
cell does not cause any vitiation of the stored map. 

A Conjunction to Biology 

We come out from a biological inspiration of rodents’ 
hippocampus. As our PC subsystem, hippocampus is 
considered to be a pre-wired neural network with many 
recurrent synapses. In contrast to our model, place cells in the 
brain are not posed intentionally to their respective place 
fields. Instead, the place fields of the place cells in the brain 
emerge spontaneously after entering a novel environment. 

The model implements building blocks expected to be 
presented in neural circuits of animals’ hippocampal 
formation. It models such phenomena as place cells or the 
path integrator. Sensory information consisting of distance of 
the spatial cues is also modeled by biologically plausible way 
– both animals and humans use egocentric-bearing related 
information for navigation [18]. 

The synapses between place cells in our model change 
neither during the learning phase nor during the recalls. 
Though they probably do change – remapping of place cells 
is an argument for it. However, we didn’t model phenomenon 
of place cells remapping, so there is a potential for a further 
research. 

Our regulation mechanism of neural activity in PC 
subsystem (5) is biologically implausible. Inhibitory 
interneurons should be modeled rather by a set of inhibitory 
cells to be likewise to real brain circuits. 

Our model consists of 10.000-odd neurons. It is about fifty 
times less than rodents’ hippocampus is suggested to contain. 
On the other hand, this is a result of computational demands. 
Note that over three quarters of neurons falls on path 
integrator, which is the most complex part of our model. 

B State-of-the-Art Models 

Several models have been designed to study animal’s 
navigation. The model in [17] is a sophisticated and detailed 
theoretical work, simulating such phenomena as � rhythm. 
Whereas it also contains proposals for navigation in multiple 
environments, it doesn’t consider interactions to the 
environment. RatSLAM [7] extends the classical model of 
PC and HD by developing a competitive attractor network of 
“pose cells” that code both position and heading. Although 
there is no biological justification for it, the system was 
successfully tested in an indoor environment with landmarks. 
The mobile robot in [1] has been successfully tested even in a 
multi-target task in a single environment, but it also doesn’t 
contain PI. Moreover its learning algorithm totally differs. 
Some models [5] use spiking model of neuron instead of our 
simple mathematical model. 

Our preceding model [4] solved a hidden-target task in a 
single chamber similar to Morris water maze [9]. The animat 
moved freely around the chamber being constrained by the 
walls and an eventual obstacle. It detected standing of all 
cues in relation to its position. On contrary, the animat 
described here moves through a maze of several chambers. It 
doesn’t look for a hidden target because it potentially could 

be a long-lasting task. Instead, it follows a trajectory 
introduced by a teacher during learning phase and it then 
recalls the trajectory by its own. This is enough to 
demonstrate storing several trajectories in a single network. 
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