
 

 

 

  

Abstract— Statistical shape models have wide applications in 

medical image analysis both for image segmentation and 

morphometry. In this paper, inspired by Minimum Description 

Length (MDL), we developed a novel algorithm for automatic 

landmark building using an Entropy-based cost-function. The 

results are tested on four different datasets (metacarpal bones, 

heads of femur, silhouettes of facial profiles, and hand outlines), 

and compared with the original MDL constructed using the “one 

fixed master shape” model approach. It can be seen from our 

preliminary results that, the new Minimum Entropy Model 

(MEM) conveys better than the MDL technique on the measures 

of Generalization Ability, Specificity and Similar Compactness. 

It also shows good potential in solving the so-called “run away” 

problem in MDL. 

I. INTRODUCTION 

EOMETIRC shape information plays a key role in many 

computer vision and image processing applications, 

especially in medical image analysis where many anatomic 

structures and related functions can be identified and 

classified in terms of their unique shape. In many applications, 

we need to analyze the shape of the same structure or object 

across a group of individuals in order to construct a 

deformable or dynamic shape model [1]. Therefore, finding a 

basis of homologous points is a fundamental issue on which 

relevant work has been published [2][3]. Unfortunately, there 

is no generally accepted definition for anatomically 

meaningful correspondence. It’s difficult to judge the 

correctness of an established correspondence. Recently, some 

inspiring work has been done by Brechbühler [4], Kotcheff [5] 

and Davies [6]. Especially in [6], the authors proposed an 

information theory objective function, and established the 

correct correspondence into the learning process. They also 

established three objective criteria that can be used to 

compare models built using different methods. Inspired by 

that, we propose another framework by using entropy based 

information theory in order to compose the objective function. 

From our results on datasets of femur, metacarpal, hand 

shapes and silhouettes, it can be seen that our method achieves 
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better scores on the Generalization Ability, Specificity and 

Similar Compactness compared to the original MDL. Further 

analysis of the silhouette datasets shows that our proposed 

method，using the proper number of components in the cost 

function, can, to some extent, solve the so-called “run away” 

MDL problem, without adding an external term such as 

curvature or node penalty as suggested in [7].  

 

II. RELATED WORK 

The principle approach for finding correspondence is to 

treat it as an optimization problem, choosing correspondences 

to optimize an explicit function. This allows for models with 

well defined properties to be created. Three important 

developments in automatic correspondence in model building 

are as follows: 

1) Hill and Taylor [8] use the trace of the model 

covariance matrix plus a correction term that 

penalizes points for moving off the model boundary. 

2) Kotcheff and Taylor [5] use the determinant of the 

model covariance matrix as the objective function. 

3) Davies et.al. [6] propose and use information theory 

to find the correspondence by minimizing the 

description length. 

In particular, Davies et.al. work which proposes that the 

correspondence problem as one of finding the optimal model 

building and provide a principal framework for statistical 

models. They also suggest three criteria for modeling 

assessment that can be used for comparing different models. 

Although MDL has shown many good properties, it has its 

own drawbacks. One is that the landmarks can pile up in some 

areas and therefore can not describe the rest of the shapes, in 

addition when this happens the algorithm reaches a small but 

meaningless description length. One way to avoid this 

“run-away” problem is to select a single shape as master 

example (as introduced in [6]) on which the marks are not 

allowed to move. Those landmarks can be placed by manual 

annotation by an expert. In some cases, as shown in Figure 8, a 

single fixed master example is not sufficient to keep the whole 

set in place. For example the free endpoints of open curves can 

drift systematically to one side or the other, neglecting the 

master. This is because the statistical weight of the majority 

can outweigh the single master and the gain of run-away 

exceeds the cost of a single outlier. More precise details are 

given in Figure 8. Hans [7] has shown that adding an external 

term like node penalty or curvature energy can avoid this, 
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however weighting this term in different datasets could be a 

problem. Therefore we propose an entropy model, which will 

achieve similar or better properties on those three evaluation 

criteria compared with original MDL and also, to some extent, 

solve the run away problem without using an external term. 

III. METHOD 

A. Information theoretical techniques 

It can be useful to think of finding correspondence as trying 

to maximize the amount of shared information in all images in 

data sets. In a qualitative sense, we may say that if two images 

with correct correspondence are correctly aligned then the 

corresponding structures will overlap. On the other hand if 

their correspondence is poor, the images will be out of 

alignment, in which case, we will have duplicate versions of 

information from image A and B. 

Using this concept, finding correspondence can be thought 

of as reducing the amount of information in the combined 

image, which suggests the use of a measure of information as 

criteria. The most commonly used measure of information in 

signal and image processing is the Shannon-Wiener entropy 

measure H [9] 
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H is the average information supplied by a set of n symbols 

whose probabilities are given by
npppp K,321

. One of the 

desired properties of Entropy is that it will have a maximum 

value if all symbols have equal probability of occurring, which 

is the case when a stack of points pile up in to one location. 

Though trivial, this observation can, to some extent, solve the 

so-called run away problem inherently. 

 

B. Joint Entropy 

    In finding correspondence, we have two images A and B 

to align. We therefore have probabilities from this training set. 

Joint entropy measures the amount of information we have in 

the two combined images [9]. The concept of joint entropy 

can be visualized using the assumption that the probability 

distribution for every weighting component in Active Shape 

Model (ASM) [10] is zero centered Gaussian distribution. So, 

for thi weight on thj component  
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C. Cost function 

We propose a method of composing our cost function in a 

combination of entropy with different assigned weights. 

 

 

∑
=

=
t

j

jjHonCostfuncti
1

λ

 

(3) 

Where iλ  is the thj eigenvalue, t is the number of 

weighting components used in shape model. 

D. Shape representation 

We are seeking a set of 12 +L
 marks on each curve, where 

L is an integer. For closed shapes, the start and end points are 

identical. The mark location is specified in a hierarchical 

manner on L levels. For closed curves with 65 marks, we 

specify on the first level of marks 0 and 32 by their absolute 

arc length position. On the second level, mark 16 and 48 are 

specified by parameter between 0 and 1. On the third level the 

marks 8, 24, 40 and 56 are specified in between already fixed 

marks. Along this way, until level 6 are finished. For details, 

we recommend you see [6]. 

The benefit for doing this is that we can optimize our cost 

function into any level and set the extra levels to be equaled 

spaced. 

E. Iterative optimization 

The optimization strategy used is as follows. We first 

initialize all landmarks to be equaled spaced, then realign all 

nodes, say 8, into a level ascending order and move these 

nodes according to this order. Every node is given an initial 

step length 0.01 and moved to probe the cost function 

descending direction till stabilized. The total number of 

circles in most of the experiment is 40.   

 

IV. EXPERIMENTS RESULTS AND DISCUSSION 

For validating this algorithm, experiments were performed 

on four different datasets, examining different purposes. Data 

are: contours of metacarpals (Closed curve), femurs (open 

curve with free ends), silhouettes (Open curve with free ends 

and run away analysis) and hands (Open curve with fixed 

ends). The first four experiments show results after applying 

MEM to these datasets. In each result, 5 levels of marks were 

placed on the contours and the effects of moving the first three 

components of the model within the interval of iλ3−  and 

iλ3  are shown. Quantitative comparisons were performed 

in experiments five to seven on metacarpals, femurs and hand 

shapes. The three classic measures of compactness, 

generalization ability and specificity were estimated using 

MEM and MDL and their comparisons are shown. 

 Briefly, generalization ability of a model measures its 

capability to represent unseen instances of the class of the 

object modeled. The generalization ability ( )G , is measured 

from training sets using leave-one-out reconstruction. The 

reconstruction error for each model is )(2
Miε , and M is the 

number of the components used in the model.  
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Where sn  is the number of training sets, σ  is the sample 

standard deviation of G(M). 

Specificity ( )S is the ability to measure if the model can 

generate instances of the object that are close to those in the 

training set. 
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Where jx are shape examples generated by the model (by 

choosing the value of the weighting components randomly in 

the range over the training set), jx′ is the closest member in the 

training set to jx , σ is the sample standard deviation of S(M) 

and N is the number of samples,  in our case , N is 100000. 

      A compact ( )C  model is the one that can use fewer 

components to represent the same variation. 

∑
=

=
M

m

m
MC

1

)( λ  

m
M

m s

MC
n

λσ ∑
=

=
1

)(

2
 

(6) 

So, we can conclude, if model A is better in compactness, 

generalization ability or specificity than model B, it will 

achieve lower value on that ability measurement. For more 

details you can read [11]. 

Furthermore, we did an extra comparison, in experiment 

eight, between MDL and MEM. In total, 22 sets of facial 

silhouettes were used to evaluate the pile up problem, since 

silhouettes offer high local curvature information and 

complicated landforms on their shapes. 

 

A. First Experiment 

Data sets: 24 contours of metacarpals with 64 marks, 8 nodes 

and a master example. 

Goal: Closed curve  

 

 

 

 

 

 

 

 

 

B. Second Experiment 

Data sets: 32 contours of femurs with 65 marks, 9 nodes, 

Goal:  Open curve, free ends  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1. From top to bottom, they are mean shape plus λ3 , 

mean shape and mean shape plus λ3− . 

 

 
Fig.1.2. Eight results with the final optimal nodes positions. 

 
Fig.2.1. Shown is the mean shape with red marks, the whiskers 

emanating from the marks indicate three standard deviations of the 

first two principal components. 

 

 
Fig. 2.2 Result of MEM analysis of femur contours. Here 8 of the 32 

examples are shown with optimized node positions. It can be seen that 

they appear to be placed in a corresponding manner and the free 

end-points have been placed in different portions of the shafts. 

 



 

 

 

C. Third Experiment  

Data sets: 22 silhouettes of heads with 65 marks, 9 nodes 

Goal: Open curve with free ends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Forth Experiment 

Data sets: 10 hand shapes with  

Goal: Open curve, fixed ends  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Fifth Experiment 

 

The comparisons are done between MDL (Han’s [4] with 

one fixed shape) with MEM (our proposed method) on three 

evaluation properties: Compactness, generalization ability 

and specificity. 

Three properties on metacarpals: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3.1. after MEM, the model shows the effect of moving the first and 

second components in the range over the training set. 

 

 
Fig. 3.2 Result of MEM analysis of silhouettes contours. Here 10 of the 

22 examples are shown with optimized node positions (Blue is level one,  

green is  level two, black is level three and red is level four). It can be 

seen that they appear to be placed in a corresponding manner and the 

free end-points (in both ends) have been placed in different portions of 

the shafts. 

 

 
Fig. 4.1 Shown is the mean shape with red marks, the whiskers 

emanating from the marks indicate three standard deviations of the first 

three principal components. 

 

 
Fig. 4.2 Result of MEM analysis of hand contours. Here 10 examples are 

shown with optimized node positions (Blue is level one,  green is  level 

two, black is level three and red is level four). It can be seen that they 

appear to be placed in a corresponding manner and the free end-points 

(in both ends) are fixed 

 

 
Fig.5.1. Generalization comparison between MDL and MEM on 

metacarpals. 

 

 
Fig.5.2. Compactness comparison between MDL and MEM on 

metacarpals. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F. Sixth Experiment 

Three properties on femurs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G. Seventh Experiment 

Three properties on hand shapes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5.3. Specificity comparison between MDL and MEM on 

metacarpals. 

 
Fig. 6.1 Generalization comparison between MDL and MEM on femurs 

 
Fig. 6.2 Compactness comparison between MDL and MEM on femurs. 

 

 
Fig. 6.3 Specificity comparison between MDL and MEM on femurs. 

 

 
Fig. 7.1 Generalization comparison between MDL and MEM on hands. 

 

 
Fig. 7.2 Compactness comparison between MDL and MEM on hands. 

 



 

 

 

 
 

 

 

 

 

 

H. Eighth Experiment -  improved control of “run away” 

in silhouettes 

 

When applying the MDL technique, one may encounter the 

so-called “run away” problem. The problem is that during 

optimization, points can possibly move into one location that 

will actually attain a global minimum avoiding descripting 

other parts of the shape. Davis [6] has tried to use a fixed 

shape to control these pile up and Hans [7] argues that one 

fixed master example shape would not always hold right. 

Furthermore he added an external term such as curvature or a 

node penalty to bound points in a reasonable area. We argue 

that our proposed algorithm does not suffer from the “pile up” 

problem without using an external term. Results are given 

below.   

Here, in Figure 8 (One step before two points overlap 

together), MDL meets the problem of pile up. A level four 

point (red, bottom) and a level one point (blue, bottom) pile up. 

However, it can be seen at Figure 3.2 that our algorithm can 

conquer this problem.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONLUSIONS AND FUTURE WORK 

The main original contributions in this paper are: 

1) We propose a novel method for finding point 

correspondences for shape model building applications. 

2) We provide quantitative comparisons between MEM 

and the original MDL using the criteria of: 

compactness, generalization ability and specificity. 

3) Finally, we provide a comparison between MEM and 

MDL when dealing with the “run away” or “pile up” 

problem. Out proposed technique avoids this well 

known pitfall. 

 

The work in this paper could be extended in several ways. 

Firstly we are planning in testing the proposed method on 3D 

datasets; in that case, a new and/or more efficient optimization 

strategy has to be used. Secondly we will like to compare our 

proposed method against models built using the PCA with EM 

algorithm on larger datasets. In addition we are hoping to 

employ and test our model building method is more 

geometrically complicated abdominal organs.  
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Fig.7.3. Specificity comparison between MDL and MEM on hands. 

 

 
Fig. 8 Result of MDL analysis of silhouettes contours. Here 10 

examples are shown, they are one step between MDL finally 

converged (Blue is level one,  green is  level two, black is level three 

and red is level four). It can be seen that the points at the bottom tried 

to pile up though one fixed master example has been used (first one). 

Compared with Fig 3.2, MEM shows reasonable better results. 

 


