
 
 

 

  

Abstract— Automatic extraction of information from 
biomedical texts appears as a necessity considering the growing 
of the massive amounts of the relative scientific literature. A 
special feature that makes this task more challenging is the 
over-abundance and heterogeneity of the relative 
genes/proteins terminology. In this paper we introduce a novel 
term-identification process and propose an effective data 
structure based on TRIE trees. It enables the storage of 
millions of biomedical terms and reflects their semantic 
relations in a compressed and memory efficient way. Gene-
Gene and Gene-Disease correlations are induced based on the 
utilization of the entropic Mutual Information Measure. 
Moreover we introduce a novel texts classification process that 
utilizes the terms identification process and a novel similarity 
matching metric. The induced correlation networks reveal 
valuable biomedical information. Text classification results 
exhibit highly accuracy figures in the range of 90 to 97.5% 
indicating the reliability of the whole approach. 

I. INTRODUCTION 
HE automatic extraction of information from biomedical 
texts appears as a necessity considering the growing of 

the massive amounts of scientific literature. The main 
problems are heterogeneity of used vocabularies and lexical 
coverage. The problem arises from the fact that there is not a 
standard adopted terminology. The emerging need is 
organization and centralization of the different biomedical 
terminological references, a task that calls experts from 
different but eventually assembled sections of science. In 
this context the use of pronouns and definite articles, long, 
complex or negative sentences or, those in which 
information is implicit can be also inconvenient for a 
searching algorithm. Term ambiguity can arise from the 
identification with common English words or bad encoding 
of genes and proteins (in the rest of the paper ‘gene’ and 
‘protein’ are used interchangingly). 

Literature data mining is concerned mainly with the 
discovery of valid, novel, interesting patterns, associations 
and deviations in scientific literature [1], [2], [3]. It 
comprises two technologies: information extraction and text 
mining. Information extraction concerns the task of 
identification and extraction of the relevant information 
from the accumulated texts, according to user’s requests. 
Text mining is defined as the process of discovering and 
extracting knowledge from unstructured data, contrasting it 
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with data mining which discovers knowledge from 
structured data [4]. 

Referring to Term Identification we should decompose it 
in three major steps: term recognition, term classification, 
and term mapping. In this paper we are mainly concerned 
with term recognition which refers to the marking of the 
words belonging to the domain, in the literature (in the rest 
of the paper ‘term identification’ and ‘tern recognition’ are 
used interchangingly). The occurrence of a single term has 
such significance as well as the co-occurrence with other 
terms. Potential considerations that must be consulted are 
the differentiation between terms and ‘non-terms’ (i.e., 
terms and lexigographic entries with no direct semantic 
relation to the target biomedical domain), and the variation 
of a specific one.  

Machine learning systems as well as statistical techniques 
are thoroughly used to cope with these problems. General 
machine learning approaches usually used include: decision 
tree learners, neural networks and support vector machines 
as in [5] and in [6], [7]; (Naïve) Bayesian approaches as in 
[8]. In [9] a Hidden Markov Model (HMM) approach, 
coupled with specific orthographic features, is utilised for 
the discovery of terms from a set of ten classes (a 
recall/precision F-score of 75.9% is reported). Similar 
results, for the recognition of Drosophila gene names using 
also HMMs, are reported in [10]. 

Another trend used towards term identification is based 
on hybrid approaches and systems. They combine rule-based 
approaches, with statistical techniques as well as linguistic 
and contextual processing in order to rank candidate terms. 
A protein/gene name tagger, ABGene, is presented in [11] – 
it was trained on Medline abstracts by adapting a POS (part 
of speech) tagger achieving a precision in the range of 60% 
to 90%. Another remarkable hybrid method called “C/NC 
value” is presented in [12] – experimental results on 2,082 
MEDLINE abstracts showed a precision of 91-98% for the 
top ranked terms. In [13], term recognition is based on a 
scheme that supplements sequence similarity. In [14] a 
method is proposed for clustering abstracts based on a 
statistical treatment of terms, together with stemming, a ‘go-
list’, and unsupervised machine learning. 
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A primary challenge for our work is the task of efficient 
retrieval of data in linear time based in the implementation 
of a Trie memory-based structure [16], [17]. The data 
include a set of stop-word dictionary, biomedical terms, and 
free text descriptions of terms. 

A primary challenge for our work is the task of efficient 
retrieval of data in linear time based in the implementation 
of a Trie memory-based structure [16], [17]. The data 
include a set of stop-word dictionary, biomedical terms, and 
free text descriptions of terms. A special prerequisite is to 
capture, represent and record the semantic interrelation 
between terms as well.  

Unsupervised machine learning techniques are 
appropriately utilized in order to induce reliable Gene-Gene 
and Gene-Disease correlations contained in the biomedical 
literature. Mutual Information Measure (MIM), a well 
established entropic metric, is used in order to estimate the 
strength of induced correlations. For each correlation, the 
pair of the gene terms, the abstracts in which they are 
identified, and disease nomenclature are appropriately 
utilized. The most expressive relations are discovered and a 
terms correlation network is constructed and visualized.  

Moreover, we introduce and present an efficient and 
reliable approach for the classification of text-references 
(i.e., Pubmed abstracts) based on the identified terms and a 
novel similarity matching formula.  

We have implemented all the relevant operations in a 
system called MineBioText [15]. A general view of the 
system’s architecture is shown in Fig.1, below. 

 

Fig. 1.  The general architecture of the MineBioText system. In 
unsupervised learning mode the input terms and abstracts are passed 
through the post processing phase (Parsing). The output graph visualization 
includes the gene terms or/and the diseases, according to the significant. In 
supervised learning mode the input terms and abstracts are also passed 
through the post processing phase. The output, apart from the predicted 
classes of the abstracts, includes the accuracy of the prediction and the 
AUC/ROC estimation. 

II. METHODS 

A. The Input 
Initially a corpus of relevant biomedical text references is 

collected, i.e., PubMed abstracts. With the aid of  Ensembl’s 
BioMart (www.ensembl.org/Multi/martview) - a data 
mining tool that can be used with any type of data and 
provides a build-in support for query optimization, we 
accumulated the respective gene/protein terminology. 
BioMart provides a set of filters in order to include or 
exclude characteristics of the retrieved gene/protein names. 
We also retrieved human gene terms from the gene ontology 
- GO database (www.geneontology.org) which provides a 
free-text description for each gene/protein. Ensembl 
identifier was used as our primary gene/protein reference 
identifier. 

B. The Trie Data-Structure and its Utilization 
A common issue in data mining is the demanding and 

overwhelming amount of data. Considering the potential 
overhead of a database usage, we tried to take advantage the 
efficient indexing methods used in database systems. An 
eventual relief was the adjustment of the Trie memory in the 
domain [16], [17]. Concerning speed, memory need, and 
sensitivity of parameters Tries were proven to outperform 
hash-trees [18]. 

We have employed and implemented a double-chained 
Trie where, the edges of a node are stored in a double 
connected list. An example of the way this structure is 
utilised for terms’ storage is illustrated in Fig. 2. 

 
Fig. 2. An example of how terms are stored. The tree contains terms “abc”, 
“abcde”, “abcdef”, “alm”, and “alk”. Each node contains a unique symbol 
or group.  Each leaf of the tree which contains ‘ ’, is a complete term. A 
term is composed of all the above ancestors until the root of the tree. All the 
other nodes simply represent a common symbol of other terms. 

As a more demonstrative example, for the case of 
inserting a term into the structure, assume that the trie holds 
ENSG00000135487 (the Ensembl Gene ID) and HLMKL2 
(a gene in HUGO terminological notation), and that 
ENSG00000135486 and HNRPA1 are to be inserted. Fig. 3, 
below, shows the state after the insertion where the bold 
lines indicate the links that connects the new inserted gene 
terms. 



 
 

 

 

 
Fig. 3.  Asserting  and  retrieving gene/protein references into the trie 

structure. 
 

The time complexity for the insertion and retrieval of 
terms with our Trie-structure implementation can be 
assessed assuming a word of n letters. The search process 
will seek for the first letter in all the nodes of the built tree, 
in order to figure out its ancestor. The time complexity of 
this action depends only on the amount of letters contained 
in the tree, suppose c. Each term of n letters will take c*n 
steps, so the total search time complexity is O(c*n). It can be 
proven that in an implementation without a double 
connected list this time can be reduce to n*logc. 

 Text Parsing. The first problem in parsing free text 
references of biomedical content is the removal of string 
patterns that contain common words (i.e., words with no 
semantic relation to the target biomedical domain). An 
efficient way to cope with this problem is to eliminate 
pre-specified patterns by using list of common words, and 
employing a look-up approach. A dictionary of English 
common used words is utilized for this purpose 
(http://wordlist.sourceforge.net/). Finally parsing of the 
gene/protein terms is necessary in order to increase 
sensitivity and reduce parsing time. Note that 
gene/protein names and symbols are converted into 
lowercase; with punctuation marks and others symbols 
removed. As long as the parsing process searches for 
single-terms a stemming operation is needless, i.e., 
potential common words within the text will never be 
reached following the Trie-based search process 
presented above. Note that with the MineBioText system 
the user may customize (e.g., adding/removing words and 
phrases) the exclusion common-words dictionary to meet 
her/his needs. 

 The utilized standard gene/protein terminologies. The 
process of the localization and recognition of terms 
utilizes various sources of gene/protein terminologies and 
nomenclatures. Primarily the inquiry is based on the 
combination of the ‘Ensembl Gene ID’ – as the primary 
gene/protein reference key, as well as other identifiers 
utilized as standard gene/protein synonyms. These 

gene/protein synonyms are provided from various related 
gene/protein nomenclature resources and gene/protein 
namings: ‘GO Id’ and ‘GO descriptions’ (www. 
geneontology.org), ‘HUGO id’ (http://www. 
gene.ucl.ac.uk/nomenclature/), ‘OMIM id’ (http://www. 
ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM), ‘Uniprot 
Swissprot id’ (http://www.ebi.uniprot.org/index.shtml). 
All these nomenclatures are appropriately incorporated 
and utilized by the MineBioText system with the 
respective gene/protein term references being searched in 
all input text references.  

 Gene/Protein Identification and GO-descriptions. In 
order to utilize free-text (i.e., GO) descriptions we need to 
find and register respective gene/protein lexicographic-
identifiers – ‘gli’, which are descriptive of (relates to) 
specific gene/protein terms. It is a process that extends the 
genes/proteins terms with extra synonyms. Here we are 
faced with the problem of words (or, roots of words) 
contained in many gene/protein descriptions. To cope 
with this problem we follow an intelligent parsing 
operation of the GO free-text descriptions in order to 
assess and measure the degree of gli relevance – gli_r of 
the description-words with respect to the corresponding 
genes/proteins. We cope with two cases: (i) if the gli is 
found in just one single description then its gli_r is set to 
1; and (ii) if the gli is located in more than one 
description, its gli_r is computed by the sum of all the 
previous calculated weight values for it (SUMother-gli_r), 
plus 1 divided by the total number of descriptions where 
the gli is found (Descriptiongli). Note that we may result 
into lgi_r values that are greater than 1. In a more formal 
setting: gli_r = SUMother_gli_r + (1 / Descriptiongli). The 
parsing process and the above formula present a form of 
term normalization. 

C. Weighted Vector-based Representation 

We employ a vector-based approach to register the 
occurrences of every term in the input texts. We deviate 
from the classic binary vector-based representation and 
move towards a more ‘vague’ assessment and registration of 
identified genes/proteins. During parsing the located words 
should be tested for their relevance with respective 
genes/proteins. For this purpose, a special process is devised 
and implemented. It copes with two cases: (i) the located 
word matches a word in a GO description - its weigh is set 
equal to its respective (computed and recorded) gli_r - note 
that in this case gli_r values may be greater that 1; and (ii) 
the located word matches a gene/protein term - its weight 
value is assigned to the largest weight value from all other 
identified words in the text (also taking into account the 
previous case).  

We introduce the following notation for each of the input 
set: 



 
 

 

 

o Abstracts. We define an abstract as ai that belong to A 
and ai a subset of Λ where, Λ is a potential set of words, 
and ∀ai ∈ A where ai ⊂ Λ, ai = {λi1, …, λiki} and ki =|ai| 
the size of ai. 

o Set-of-Abstracts. Assume A = {ai … an} as the finite set 
of the abstracts. The total number of abstracts is denoted 
as |A|.  

o Set-of-Terminology-Terms. We denote the set of all 
terms from the utilized gene/protein nomenclatures as 
Tnom; with different instantiations for each of the 
respective gene/protein nomenclatures, e.g., THUGO for 
HUGO, TUniProt for UniProt, TSwissProt for SwissProt etc. 
A single gene/protein terms is denoted with tx. 

o Set-of-All-Terms. We define the set of all terms – apart 
from the Ensembl identifiers- as TX; with TX = THUGO U 
TEMBL U … 

o Set-of-Ensembl-Terms. We denote the set of the 
Ensembl identifiers as S = {s1 … sm}; the size of S is 
denoted as |S|. 

o Description (free-text). A description tD is a set of 

words, and is defined as: { } dN1D
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o Set-of-Descriptions (lgi). A set of descriptions TD is the 
set of all tD defined as: tD ∈TD where  tD is a set of words 
Λκ  

o Set-of-Common-Exclusion-Words – the Words List.  Is 
denoted with L, L = {the set of all English words in the 
input common-words file}. 

Initially all the gene/protein terms TD and S are stored. 
Assume that during parsing, and for each gene/protein 
contained and located in set TX, as well as the terms 
contained in the descriptions TD, the Ensembl primary gene 
identifier is located, selected, and its significance is 
estimated. The significance of a gene/protein term is defined 
as a function: ∀tx ∈ Tx, ∃stx ∈ S, such as: ∃T →  S. For each 
GO-description there is a set of significant identifiers (i.e., 
gli) StD that belongs to S:∀tD ∈ TD corresponds an STD ∈ S. 

Computing terms weights. Equipped with the definitions 
made above, assume a word being located in a text 
reference. If the word belongs to the set of standard 
gene/protein terminological references (Tx) or, to the 
Ensembl’s identifiers set (Sx), the weight value assigned to 
its corresponding significant identifier is set to 1. Otherwise, 
we check if it belongs to the set of descriptions; if it belongs 
to one description we set its corresponding Ensembl 
identifier equal to 1; if the word belongs to more that one 
description (i.e., it corresponds to different genes), assume 
n, its significant identifier weight is set to 1/n. Finally all 
weight values are pruned to one. At the end, and for each 
text reference, its respective weighted-vector representation 
is formed. The number of places of the vector is always 

fixed and equal to the total number of Ensembl identifiers, 
with their computed weights as values. 

D. Construction of Gene/Protein Associations Network 
In order to identify the terms that share implicit 

associations, a knowledge association’s network is build 
using statistical techniques. Mutual Information Measure 
(MIM), an entropic measure, is utilized in order to quantify 
correlations between variables, based on co-occurrence 
statistics [19], [20]. MIM computes the correlation or, 
association strength between gene/protein terms with 
reference to a given collection of abstracts (Fig.4).  
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Fig. 4. Mutual Information Measure: Pk;i denotes the percentage of input 
abstracts in which term i occurs (k=1) or do not occurs (k=0). Pk;i,k;j denotes 
the percentage of abstracts in which terms i and j co-occur (k=0) or, none of 
them occur (k=0). 

Previous work has shown that it is possible to identify 
implicit relationships by ranking inferred relationships and 
preferentially examining those at the top list [21]. The 
computed MIMs are stored in a file to be used for the 
construction of gene/protein correlation (or, association) 
network (presented into the sequel). 

Forming the Gene/Protein Correlations Network. The 
next step includes the construction of the genes/proteins 
correlation network. It is based on the appropriate 
elaboration of the computed gene/protein MIM values. The 
whole process follows two steps: (i) initially the list of 
terms; the list of abstracts; and a user specified percentage 
MIM-threshold for the gene/protein terms with top ranked 
MIM values, are provided. The last input specification is 
provided in order to filter-out the gene/protein MIM values 
that are below the specified MIM threshold.  This is done in 
order to keep the most-informative gene/protein 
correlations; and (ii) after filtering-out, the remaining 
gene/protein correlations are also examined for their 
strength. This operation is performed with a careful 
discretization of the corresponding MIM values into three 
correlation strength levels, with the following natural 
interpretation: strong, medium and weak. Discretization of 
MIM values is based on a method reported in [22], also 
utilised in [23] in the context of gene selection.  

E. Classification of Texts 

We introduce a novel approach for text categorization and 
text class/category-prediction based on term frequency and 
supervised learning approaches. 

Training-phase. For simplicity of the presentation, 
assume a two-class (categories) problem - POS and NEG.  



 
 

 

The process may be generalized to cover multi-class 
cases. Two corresponding sets of abstracts are assumed to be 
available - by querying Pubmed for specific categories of 
interests (e.g., ‘breast cancer’ vs. ‘ovarian cancer’). Training 
is performed on each of the class-specific set of abstracts. 
The corresponding abstracts are parsed and for each 
abstract, its corresponding vector-based representation is 
formed. Then, weight computation is performed according 
to the methodology presented above. The strength values for 
the significant identifiers is computed as the sum of the 
weight values of all the terms identified (formula in Fig. 5, 
above). All the results are stored into the train-results-file. 
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Fig. 5. Calculation of Strength Values. A;train is the set of training 
abstracts; L is the number of gene terms located in A;train, tA;train is the set 
of gene terms located in A;train, VtA;train the Ensembl unique identifier of 
each gene term, and SA;train the strength of the identifier (to compute). 

Testing-phase. As for the training case, we assume the 
availability of two class-specific sets of abstracts. For each 
set the identified gene/protein terms and their weights are 
recorded and stored. For each term identified in the set of 
test abstracts its occurrence in the saved train-results-files is 
checked, as well as its corresponding class-specific rank, 
i.e., its position in the ordered (by their training strengths) 
lists of the corresponding file. So, we have different ranks 
for the POS, rankPOS(t), and for the NEG, rankNEG(t) classes, 
respectively. The formula in Fig.6, below, computes the 
strength, strengthTEST(t), of a term t identified in a test-
abstract. It is computed with reference to its weight, 
weight(t), and its corresponding and class-specific strengths, 
strengthPOS(t) and strengthNEG(t). 
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Fig. 6.  Computing the strength of a term in a test text-abstract. 

For all the terms identified in a test abstract the sum of 
their corresponding strengths is computed. If it is greater 
than 0, it is assigned (classified) to the POS class, otherwise 
to the NEG class. 

III. EXPERIMENTS AND RESULTS 

In order to evaluate the reliability of the presented 
biomedical literature mining approach, we focused on five 
domain sets including retrieved sets of abstracts and 
gene/protein terms from PubMed and Ensembl that concern 
the ‘Colon’, ‘Breast’, ‘Leukaemia’, ‘Ovarian’ and 

‘Prostate’ cancer domains. The sets of abstracts were 
compared in order to exclude the common abstracts (i.e., the 
abstracts that refer to more than a single domain of interest). 

 

Fig. 7.  The visualized gene/proteins-disease correlation network between 
Breast, Ovarian and Prostate Cancer – ‘red’, ‘green’ and ‘blue’ links 
indicate ‘strong’, ‘medium’, and ‘low’ correlation strengths, respectively. 
Visualization of the network is achieved with the use of the TULIP graph 
visualization tool (http://www.tulip-software.org/). 

Correlation Networks. Gene and Gene-Disease 
correlation networks were generated for all the domains - 
Fig. 7, below, illustrates such a network. It concerns the 
breast, ovarian and prostate cancer cases. Inspecting the 
network one may identify genes/proteins that correlate with 
a specific disease or, identify genes/proteins common to two 
diseases (e.g., gene ‘brca1’ is common between the breast 
and ovarian cancer). 

Texts/Abstracts-Classification. A number of 9258, 4594, 
and 13218 abstracts were retrieved for breast, colon, and 
leukemia diseases, respectively (by querying Pubmed and 
excluding the common, between diseases, abstracts). 
Classification results, based on a 50% split of the abstracts 
to training and test sets, are shown in table I, below. 

TABLE I 
TEXTS/ABSTRACTS CLASSIFICATION RESULTS 

Task Accuracy
% 

ROC/ 
AUC 

‘Breast'  vs  ‘Colon’  93.0  0.993 
‘Colon’  vs  ‘Leukemia’  97.5 0.997 
‘Breast’ vs. ‘Leukemia’  90.0 0.966 

The results – both in terms of accuracy and ROC/AUC 
figures, are indicative for the reliability of the whole gene 
terms’ identification and weighting process, as well as for 
the introduced texts classification metric. 



 
 

 

IV. CONCLUSIONS AND FUTURE R&D PLANS 
We presented an integrated biomedical literature mining 

methodology for the identification of gene/protein terms, 
assessment of their relative (to each text reference) weights 
and strengths. Although the heterogeneity and complexity of 
terminology and nomenclature in the biomedical domain, we 
presented an effective approach for the distillation of 
valuable information, as being exhibited from the 
construction of gene and gene-disease correlation networks. 

The overall methodology is based on: (a) the introduction 
of an efficient and effective memory structure (the Trie data-
structure) - able to cope with the huge amounts and the 
semantic heterogeneity of the involved biomedical 
nomenclatures; (b) the introduction of special term-
weighting metrics; (c) the utilization of the mutual 
information measure to assess the correlation strength 
between two gene/proteins, and the subsequent construction 
of the correlation networks; and (d) a specially devised text 
classification process and related metrics.  

The overall methodology is implemented in an integrated 
(and easily adaptable to different domains) system called 
MineBioText. We have tested and examined the 
performance of the system on various biomedical domains 
achieving very good accuracy and sensitivity/specificity 
figures. 

Intensive experimentation with different biomedical 
domains – to test the reliability and efficiency of the system, 
as well as porting of the whole system into a Web-services 
(and application) environment compose our future R&D 
targets. 

ACKNOWLEDGMENT 
The work was partly supported by the INFOBIOMED 

NoE FP6-IST-2002-507585 and ACGT FP6-IST-2005-
026996, EU funded projects. Opinions and results expressed 
herein do not correspond to official projects’ Consortium 
position and are the sole responsibility of the authors. 

REFERENCES 
[1] R. Feldman, “Mining unstructured data”, KDD Tutorial Notes, 

pp.182–236, 1999. 
[2] D. Mladenic, “PhD thesis”, http://www-ai.ijs.si/DunjaMladenic/ 

PhD.html, 1998. 
[3] F. Ciravegna, “Challenges in information extraction from text for 

knowledge management”, in IEEE Intelligent Systems and Their 
Applications, (Trend and Controversies), 2001. 

[4] M. A. Hearst, “Untangling text data mining”, in Proc. 37th Annual 
Meeting of the Association for Computational Linguistics, pp. 3–10, 
1999. 

[5] B. Stapley, L. Kelley, and M. Sternberg, “Prediction in the sub-
cellular location of proteins from text using support vector machines”, 
in  Procs of the Pacific Symposium on Bio-Computing – PSB, pp. 
374-385, 2002. 

[6] R. Bunescu, R. Ge, and R. J. Mooney, “Extracting gene and protein 
names from biomedical abstracts”, unpublished technical note, 
http://www.cs.utexas.edu/users/ml/publication/ie.html, 2002. 

[7] R. Bunescu, R. Ge, R. J. Kate, R. J. Mooney, and Y. M. Wong, 
“Learning to extract proteins and their interactions from MEDLINE 

abstracts”, in Proceedings of the ACM symposium on Applied 
computing, pp. 121-127, 2004 

[8] K. S. Sathiya, et al., ”A machine learning approach for the curation of 
biomedical literature”, ACM SIGKDD Explorations Newsletter, vol. 4, 
no. 2, pp. 93-94, 2002. 

[9] N. Collier, C. Nobata, and J. Tsujii, “Extracting the names of genes 
and gene products with a hidden markov model”, in Proceedings of 
COLING, Saarbruecken, 2000, p. 201–207. 

[10] A. Morgan, A. Yeh, L. Hirschman, and M. Colosimo, “Gene name 
extraction using Fly Base resources”, in 2003 Proceedings of NLP in 
Biomedicine - ACL, Sapporo,  Japan, 2003, p. 1–8. 

[11] L. Tanabe, and W. J. Wilbur, “Tagging gene and protein names in 
biomedical text”, Bioinformatics, 2002. vol. 18, no. 8, pp. 1124–1132, 
2002. 

[12] K. Frantzi, S. Ananiadou, and H. Mima, “Automatic recognition of 
multi-word terms: the C value/NC-value method”, International 
Journal on Digital Libraries, vol. 3, no. 2, pp. 115-130, 2000. 

[13] J. T. Chang, S. Raychaudhuri, and R. B. Altman, “Improving 
biological literature improves homology search”, in Pacific 
Symposium on Bio-computing, Mauna Lani, 2001, HI, 374-383, 2001. 

[14] I. Iliopoulos, A. Enright, C. Ouzounis, “Textquest: document 
clustering of Medline abstracts for concept discovery in molecular 
biology”, in Pac. Symp. Biocomput., pp. 384–95, 2001. 

[15] D. Antonakaki, A. Kanterakis and G. Potamias, “Biomedical literature 
mining for text classification and construction of gene networks”, in 
Proceedings of the 4th Hellenic Conference on Artificial Intelligence, 
Lecture Notes in Computer Science - LNAI 3955, pp. 469-473, 2006. 

[16] V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and 
Algorithms, Addison-Wesley, Reading,Mass., 1983, pp. 163–169. 

[17] E. Fredkin, “Trie memory”, Informal Memorandum. Bolt Beranek and 
Newman Inc.. Cambridge, Mass., 23 January 1959. 

[18] F. Bodon and L. Ronyai, “Trie: an alternative data structure for data 
mining algorithms”, Computers and Mathematics with Applications, 
vol. 38, no. 7, pp. , 739–751, 2003. 

[19] B. J. Stapley, and G. Benoit, “Biobibliometrics: information retrieval 
and visualization from co-occurrences of gene names in Medline 
abstracts”,. in Pacific Symposium on Bio-computing - PSB, pp. 529–
540, 2000. 

[20] T. Dunning, “Accurate methods for the statistics of surprise and 
coincidence”, Computational Linguistics, vol. 19, pp. 61–74, 1993. 

[21] J. D. Wren, R. Bekeredjian, J. A. Stewart, R. V. Shohet, and H. R. 
Garner, “Knowledge discovery by automated identification and 
ranking of implicit relationships”, Bioinformatics, vol. 20, pp. 389–
398, 2004. 

[22] L. M. Lopez, I. F. Ruiz, R. M. Bueno and G. T. Ruiz, “Dynamic 
discretisation of continuous values from time series”, in R.L. Mantaras 
and E. Plaza (Eds) Proc. 11th European Conference on Machine 
Learning (ECML 2000), LNAI 1810, pp. 290–291, 2000. 

[23] G. Potamias, L. Koumakis, and V. Moustakis, Gene selection via 
discretized gene-expression profiles and greedy feature-elimination. 
LNAI 3025, pp. 256–266, 2004. 


