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Abstract—The objective of this work was to investigate 
the segmentation ability of the Fuzzy Gaussian Mixture 
Models (FGMM) clustering algorithm, applied on 
complementary DNA (cDNA) images. A Simulated 
Microarray image of 200 cells, each containing one spot, was 
produced following standard established procedure.  An 
automatic gridding process was developed and applied on 
the microarray image for the task of locating spot borders 
and surrounding background in each cell. The FGMM and 
the Gaussian Mixture Model (GMM) algorithms were 
applied to each cell, with the purpose of discriminating 
foreground from background. The segmentation abilities of 
both algorithms were evaluated by means of the 
segmentation matching factor in respect to the actual classes 
(foreground-background pixels) of the simulated spots. The 
FGMM was found to perform better and with equal 
processing time, as compared to the GMM, rendering the 
FGMM algorithm an efficient alternative for segmenting 
cDNA microarray images.  

I. INTRODUCTION 
icroarray imaging is used for the concurrent 
identification of thousands of genes in the field of 

bioinformatics [1]. By finding the location of the spots in 
a complementary DNA (cDNA) microarray experiment, 
calculations of the mean fluorescence intensity value are 
obtained, that are closely related to the expression of a 
specific gene. Thus, a precise localization and outlining of 
a spot are essential to obtain a more accurate intensity 
measurement, leading to a more precise expression 
measurement of a gene.  

For the task of measuring spot intensity values, three 
major steps were followed [1]-[2]: 1/ the gridding step, 
for the precise localization of the cells, 2/ the 
segmentation step, for distinguishing each cell’s 
foreground from background and 3/ the intensity 

extraction step, for calculating the mean fluorescence 
value of each spot.  
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In the past, several techniques and software packets 
have been developed for the task of processing 
microarray images [3]-[7]. In the ScanAlyze [3] software, 
a fixed circle segmentation method is used, where all 
spots are considered to be circular with a fixed predefined 
radius. In the GenePix [4] software, an adaptive circle 
segmentation technique is employed. According to that 
method, the radius of each spot is not constant but adapts 
to each spot separately. In the Spot [6] software, an 
adaptive shape segmentation technique is performed. In 
the latter technique, the most representative algorithms 
employed are the watershed [8] and the seeded region 
growing [9]. In the ImaGene [7] software, a histogram 
based segmentation method is applied, in which the 
values between the 80th and the 95th histogram percentile 
contribute to the calculation of the mean intensity value. 
Nevertheless, in all those techniques, the major 
disadvantages are either that spots are considered to be 
circular in shape or a-priori knowledge of the precise 
position of the spots’ centers is a pre-requisite [10].  

The Fuzzy Gaussian Mixture Model (FGMM) 
clustering algorithm is an effective clustering technique 
that has found application in many areas of pattern 
recognition, such as in voice recognition [11]-[12], but it 
has not been applied so far in microarray images.  

In the present study, the FGMM clustering algorithm 
was developed for processing microarray images with 
purpose to investigate the segmentation ability of the 
algorithm. Additionally, a comparison of the FGMM 
algorithm with the Gaussian Mixture Model (GMM) 
algorithm, which has been shown to be effective in 
microarrays segmentation [13], was performed. Both 
methods, FGMM and GMM, were developed in 
MATLAB® [23]. Evaluation was performed by 
calculating the segmentation matching factors [14] of 
each algorithm in respect to the actual classes 
(foreground-background pixels) of the simulated spots. 
Additionally, the spots’ mean intensity values were also 
calculated, from the segmented images, and were 
compared with the actual mean intensities values of the 
simulated spots. 
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II. METHODS AND MATERIAL 

A. Automatic Gridding Process 
A cDNA image consists of an arrayer, several sub-

arrays, and thousands of spots corresponding to specific 
genes (see Fig. 1). Gridding is the procedure of 
segmenting each sub-array into numerous cells, each cell 
containing one spot and its background. Gridding renders 
the procedure of spot finding easier, since segmentation 
may be applied within each individual cell automatically. 
The gridding algorithm adopted in the present study 
consisted of the following steps [13]. 

1/Determination of sub-array regions. First average 
intensities were calculated along image rows and columns 
for both Red (‘R’) and Green (‘G’) channels (R for 
Cyanine Cy3 and G for Cyanine Cy5), thus forming two 
signals for each channel. Second, noise suppression was 
performed by means of a low pass filtering mask [13]. 
Third, sub-array regions were determined by finding the 
local minima of either the R or the G signals in the 
horizontal and vertical axes [15]-[16]; multiple 
experimentation showed that by choosing either R, or G 
channels, no significant differences were observed in sub-
array boundary localization. 

 
Fig. 1: An Arrayer consists of 8x4 sub-arrays, each sub-array of 19x21 
cells and spots respectively. 
 

2/Determination of cells. A similar procedure to sub-
array determination was followed for identifying 
automatically the centers of the spots (local maxima) and 
the boundaries of the cells (local minima), employing an 
algorithm based on regional connectivity properties of 
pixels. Figure 2 demonstrates the automatic localization 
of the maximum signal values of an R-signal, as well as 
the result of the gridding step, applied to a sub-array 
region of a microarray image that contains 19x21 spots. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2: (a) and (b), automatic localization of spot centers (local maxima 
using Matlab’s ‘imregionalmax’) and (c) cell determination (local 
minima using Matlab’s ‘imregionalmin’), applied on a real cDNA 19x21 
sub-array microarray image collected from the Davidson College [21]. 
 

B. Gaussian Mixture Models 
Let  X={x1, x2,…, xT}  be a sequence of T vectors with 

xi intensity values, and θ = {pi, μi, Ci} for i = 1,..,c , be a 
set of parameters to be maximized, using the Expectation 
Maximization technique [13], where parameters pi, μi and 
Ci correspond to mixture weights, mean vectors, and 
covariance matrixes respectively of a mixture of c 
Gaussian Distributions. 

The major task of the Gaussian Mixture Model [13]-
[15] algorithm is to maximize the likelihood function that 
is described by equation (1): 
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where the likelihood function of each vector p(xt|θ ) is 
computed by equations (2) and (3) as a probability 
density function of multiple Gaussians:  
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where (xt-μi)’ is the transpose matrix of (xt-μi),   Ci
-1 is the 

inverse matrix and |Ci| is the determinant of the 
covariance matrix C, for each class i, and d is the number 
of features used. 

For the maximization of p(Xt|θ ), an auxiliary 
function Q, named expected log-likelihood function [22], 
may be estimated employing equation (4): 
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where { , , }i i ip Cθ μ=  are computed by using equations 
(5)-(7) (Maximization Step). 
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The posterior probabilities p(i|xt,θ ) are then 
recomputed by using equation (8) (Estimation Step). 
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Equation (4) is then calculated, and the process is 
repeated until there is no significant change in Q.  

C. Fuzzy Gaussian Mixture Models 
In the Fuzzy Gaussian Mixture Models FGMM [11]-

[12] algorithm, a modification of the Fuzzy C Means 
FCM clustering technique [24] is performed for the 
estimation of parameters θ of GMM. In the FCM 
algorithm, the objective is to minimize equation (9). 
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where U={uit} is a fuzzy c-partition of the initial 
vector X, uit is the probability of vector xi of belonging to 
class i,  m is the fuzzy membership of uit, called the 
degree of fuzziness, and d is a dissimilarity measurement 
[17], defined by equation (10). 

2 log ( , | ) log ( | , )it t i td p x i p p x iθ θ= − = −  (10) 
Substituting equation (10) to (9), equation (11) is 

derived: 

1 1
( , ) log ( | , )

T c
m
it i t

t i
J U u p p x iθ θ

= =

= −∑∑  (11) 

Minimization of equation (11) may be accomplished 
by using Lagrange multiplier methods [18]. Calculation 
of the new fuzzy parameters is achieved by using 
equations (12) – (14) (Minimization Step). 
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After the calculation of the new parameters, matrix U 
is recomputed according to equation (15) (Estimation 
Step). 
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Equation (11) is then calculated, and the process is 
repeated until there is no significant change in J. 

D. Segmentation Process 
For every cell determined by the gridding process, the 

following procedure was performed: 
1/ The NxM cell image, considering R and G channels 
separately, was converted into a vector X, with 
dimensions 1xNM. A typical example of the conversion of 
a 3x3 image cell into 1-dimensional vector is illustrated in 
Fig.3. 
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Fig. 3. Conversion of an initial cell (3x3 dimensions) into a vector (1x9 
dimensions). The numbers inside the figure indicate random intensity 
values. 
 
 2/ The clustering algorithms (GMM and FGMM) were 
separately applied to the vector X, in order to discriminate 
the data into two categories or classes (c=2), the 
foreground (FG) and background (BG) class, denoted by 
zeros and ones, respectively. Next, the binary vector was 
transformed into a binary cell, following the inverse 
procedure, as illustrated in Figure 4. 
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Fig. 4. Conversion of a binary vector (1x9 dimensions) into a binary cell 
image (3x3 dimensions). Zeros indicate foreground and ones indicate 
background, as these values were the outcome of a clustering algorithm.  
 

E. Intensity Extraction 
Representative spot intensity was obtained by 

subtracting the mean of the FG from the BG, according to 
equation (16). 

FG BGI μ μ= −   (16) 
 Where μFG and μBG are the mean foreground and mean 
background respectively, both calculated from the 
corresponding labeled cell pixels. 

F. Material 
For the numerical evaluation of the clustering ability of 
the two techniques, a simulated cDNA image was 
produced as described in literature [19]-[20]. In order to 
generate spots with realistic characteristics, the following 
procedure was followed. A true cDNA image, consisting 
of 200 spots, was used as a template, and its binary 
version was produced by employing a thresholding 
technique [19] (see Fig. 5). In the simulated image, the 
location as well as the area of each spot was a-priory 
known. The mean intensity value of each spot was pre-
defined, ranging between 0 and 255 for both the R and G 
channels [19]. Spot intensities were produced using an 
exponential distribution with mean value the pre-defined 
mean intensity value (using Matlab’s ‘exprnd’ and 
‘expfit’ functions). Background intensities were drawn 
from a single exponential distribution, with mean value 
determined from the true cDNA image’s mean intensity 
background [19]. Figure 5c shows the simulated cDNA 
image.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: (a) Original real cDNA microarray image [21] and (b) the binary 
image used as a template to produce the simulated cDNA microarray 
image, (c) the simulated image. 

 
The accuracy of segmentation was numerically 

calculated using the segmentation matching factor 
(equation (17)) [14] for every binary cell, produced by the 
clustering algorithm. 
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∩
=

∪
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where Acal is the area of the spot, as determined by the 
proposed algorithm, and Areal is the actual spot area. A 
perfect match is indicated by a 100% score, any score 
higher than 50% indicates reasonable segmentation [14] 
whereas, a score of less than 50% indicates poor 
segmentation [14]. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
The gridding procedure was first performed and for 

every cell produced, the GMM and FGMM algorithms 
were applied identifying two classes, the foreground and 
background pixels. Thus, a set of two binary images, one 
for each clustering algorithm, were produced. The 
segmentation matching factor (equation (17)) was then 
calculated for each binary image, in order to estimate the 
accuracy of each method quantitatively. 

According to  our results, FGMM was more accurate 
than the conventional GMM clustering algorithm. Results 
of 6 different cells of the Green channel with the 



 
 

 

corresponding segmentation matching factors are 
illustrated in Table I. It should be noted that the number 
of Gaussians was set to c=2 in both clustering algorithms 
and that the degree of fuzziness in FGMM was set to 
m=1.5. 

 
TABLE I 

SEGMENTATION RESULTS FOR 6 DIFFERENT CELLS 
Original  

Cells 
Actual 

Boundaries 
GMM 
Result 

FGMM 
Result 

    
Cell 1 Accuracy: 87.60% 100.00% 

    
Cell 2 Accuracy: 95.87% 97.52% 

    
Cell 3 Accuracy: 91.74% 100.00% 

    
Cell 4 Accuracy: 95.87% 96.69% 

    
Cell 5 Accuracy: 89.26% 100.00% 

    
cell 6 Accuracy: 95.04% 98.35% 

Comparative results for 6 different cells obtained from the G channel of 
the simulated microarray. The first column indicates the simulated spot 
with the surrounding area, the second column indicates the actual 
boundaries of the spot and the third and the forth columns present the 
segmentation results of the GMM and FGMM algorithms as well as the 
corresponding matching factors. 
 

Additionally, the overall accuracy for all simulated 
spots for both Red and Green channels was calculated. 
The total number of pixels was 26448 (228 x 116 pixels) 
for each channel. The standard deviation of matched 
pixels for each cell was determined for both the FGMM 
and the GMM. The results are illustrated in Table II. 

It is clear that the best overall accuracy for matching 
pixels (95.04%) was accomplished by the FGMM 
algorithm. According to Table II, the standard deviation 
of matched pixels was the lowest (3.63), in the case of 
FGMM algorithm, rendering it more robust than the 
conventional GMM technique. 

 

 
TABLE II 

OVERALL SEGMENTATION ACCURACY AND STANDARD DEVIATION 
CALCULATIONS 

GMM FGMM  
Match Mismatch Match Mismatch 

Overall 
Accuracy 93.88% 6.12% 95.04% 4.96% 

Standard 
Deviation 7.61 3.63 

The Overall accuracy and standard deviation for matched and 
mismatched pixels achieved by each of the two different techniques in 
both R and G channels for all 200 spots (52896 pixels total). 
 

Intensity values for each cell were also calculated by 
using equation (16). The intensity values of the 6 cells, 
shown in Table I, were calculated and are illustrated in 
Table III. Moreover, percentage differences between the 
actual and the calculated by GMM and FGMM intensity 
values are also presented in Table III.  

 
TABLE III 

INTENSITY VALUE CALCULATIONS FOR 6 DIFFERENT SPOTS 

Cells I1 
(Actual) 

I2 

(GMM) 
I3 

(FGMM) 
(|I1-I2|/I1) 

x100 
|(|I1-I3|/I1) 

x100 
Cell 1 114 85 114 25.44 0.00 
Cell 2 72 76 74 5.56 2.78 
Cell 3 128 101 128 21.10 0.00 
Cell 4 122 92 110 24.60 9.84 
Cell 5 146 105 146 28.08 0.00 
Cell 6 65 64 64 1.54 1.54 
I1 column denotes the actual intensity values of the spots, I2 the intensity 
values of the spots by using the GMM, and I3 the intensity values of the 
spots by using the FGMM algorithm. The percentage differences of the 
calculated, in respect to the actual, intensity values of the two different 
clustering techniques are also presented in columns five and six. 

 
According to Table I, it is clear that in cases were the 

segmentation matching factor was 100% (e.g. cell 3-
FGMM column 4 Table I), the calculated intensity values 
were identical with the actual ones (see corresponding 
cell 3 column 6 in Table III). In the cases where the 
segmentation matching factor was close to 90%, the 
percentage difference between the actual and the 
calculated intensity values was close to 21%. 
Segmentation accuracy lower than 90% (e.g. cell 5-GMM 
column 3 in Table I) resulted in percentage differences 
higher than 25% (see Column 5 Table III). Thus, for 
precise spot intensity estimation it is essential to achieve 
accurate segmentation. 

Finally, it was found that the computation time 
required and the iterations involved for the FGMM were 
equal to that of the GMM.   

IV. CONCLUSIONS 

In the present study, the FGMM clustering technique is 
proposed for improving the segmentation of cDNA 
microarray images. This fuzzy GMM approach proved 
more accurate in spot intensity computation than the 
conventional GMM algorithm, thus, providing a more 



 
 

 

reliable means for estimating gene expression on cDNA 
microarray images.  
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