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Abstract: Recent complex bioinformatics data sets, such as Microarray and Proteomics data sets, which
are characterized by sparsity and high dimensionality, require an analysis, which on the one hand offers
a high degree of accuracy, but on the other hand simultaneously provides transparency in the analysis
process. Recent Machine learning techniques, like e.g. the Support Vector Machines, own a remark-
able generalization ability and are among the first choices to confront such complex data. However,
the black-box structure of most machine learning algorithms constitutes a significant drawback. On the
other hand, Fuzzy rule based systems form an attractive alternative since they result in linguistically,
interpretable rules, but suffer from the problem of overfitting and are sensitive to the curse of dimension-
ality. In order to merge the advantages of both approaches Support Vector algorithms have been adapted
for the identification of a Support Vector Fuzzy Inference (SVFI) system. However, although the high
generalization performance of the SVM approach is retained, the SVFI rules usually lack understand-
ability. The paper proposes the derivation of a simpler fuzzy system that approximates the accurate
set of rules keeping only the more important aspects of the data. The approximation algorithms either
receive an a priori description of a set of fuzzy sets or, especially for the case when interpretable fuzzy
sets cannot be prespecified by the experts, an algorithm is presented for building them automatically.
After the construction of the interpretable fuzzy partitions, the developed algorithms extract from the
SVFI rules a small and consice set of interpretable rules. Finally, the Pseudo-Outer Product (POP)
fuzzy rule selection orders the interpretable rules by using a Hebbian like evaluation in order to present
the designer with the most capable rules.
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1 Introduction

The need to analyse and understand the scientific con-

tent of many bioinformatics data sets, especially of mi-

croarray and proteomic data sets, requires the use of

sophisticated tools. Machine learning approaches, like

the Support Vector Machines(SVM), which recently re-

ceived a lot of attention, own a remarkable generaliza-

tion ability and are among the first choises to confront

such complex data. Fuzzy logic approaches in contrast

result in predictions, which are easily interpretable and

can be extra-polated in predictable ways. Fuzzy mod-

eling however is limited because in its traditional for-

mulation, the number of rules in a fuzzy model grows

exponentially with the number of variables and reso-

lution. The paper presents a simple but effective set
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of algorithms for merging the advantages of the above

approaches by the construction of an approximate in-

terpretable fuzzy system. We initially utilize the algo-

rithms of [3] for the construction of a Support Vector

Fuzzy Inference (SVFI) system, where the number of

SVFI rules is controlled by the extracted support vec-

tors. After that, an approximate system is constructed

using interpretable application specific fuzzy sets.

The paper proceeds as follows: Section 2 deals with

the automatic construction of interpretable fuzzy sets

along dimensions for which the human experts cannot

predefine them easily. Section 3 reviews the Support

Vector Fuzzy Inference system and the corresponding

algorithms for fuzzy rule construction from the trained

SVMs. Section 4 concerns the derivation of the in-

terpretable fuzzy rules from the Support Vector Fuzzy

Inference rules. The results section (i.e. Section 6)

presents applications of the techniques of the extracted

rules and finally, section 7 concludes the work of the

paper.

2 Features with unspecified a
priori interpretable fuzzy sets

The presented approach requires the a priori specifica-

tion of interpretable fuzzy partitions for every feature.

However, frequently, interpretable fuzzy sets for some

features cannot be prespecified by the human experts.

In this case, we use an algorithm, which can be used to

derive automatically a fuzzy partition that owns inter-

pretability properties. The interpretable fuzzy set par-

tition construction algorithm for the feature f proceeds

by hierarchically merging candidate fuzzy partitions.

The key point for the effective generation of inter-

pretable fuzzy partitioning is the design of the proper

distance metric Dm that will best separate the m fuzzy

sets. A clever design for Dm based on the concepts of

external and internal distances is proposed in [10].

3 Support Vector Fuzzy Infer-
ence (SVFI) learning

This section reviews the framework for Support Vector

Fuzzy Inference (SVFI), a method with high generaliza-

tion and overfitting prevention ability. We implemented

an approach similar to one presented in [3] for the ex-

traction of Support Vector Fuzzy Inference rules, which

we formulate belowin the algorithmic format.

Algorithm for SVFI fuzzy classifier identifica-

tion

1. Construct a classification SVM from the train-

ing data to get a decision boundary in the fea-

ture space F of the form f(x) = sgn(
∑

i∈S yi ·

αi ·K(x,xi) + b0) where S is the set of obtained

support vectors. Also K is the Gaussian Mercer

kernel. This kernel defines implicitly a nonlinear

mapping Φ from the input space X to a kernel

induced feature space F .

Assign a suitable value to the regularization pa-

rameter C, and solve the corresponding quadratic

program to obtain the Lagrange multipliers αi and

a suitable value for the constant bias term b0. Ef-

fective algorithms for training SVMs [7] can be

readily utilized at this stage.

2. Extraction of fuzzy rules from the SVM decision

rule:

r ←− 0 // r indexes the rule under construction

for i = 1 to l // all training samples l

if αi > 0 then // training samples i with

Lagrange multipliers αi > 0 are support vectors

r ←− r+1 // one more rule correspond-

ing to the current SV will be constructed

zr ←− xi // the location parameter zr

for rule’s r membership functions is the support

vector xi

cr ←− yiαi // the value of the single-

ton type output fuzzy set for rule r

We denote by x = [x1, x2, . . . , xN ] the fea-

ture values of an input vector x and by zr =

[zr1
, zr2

, . . . , zrN
] the corresponding feature values

of the support vector r. The constructed fuzzy

rule takes the form:

if CloseToSV(x1, zr1
) and CloseToSV(x2, zr2

)

and . . . and CloseToSV(xN , zrN
) then y is cr

Compute the weight of rule r as: wr ←− αi //

the magnitude of the Lagrange multiplier signifies

the importance of the corresponding rule

end if

end for



4 Interpretable rules

The SVFI approach has the following basic drawbacks:

• The SVFI rules are formulated with fuzzy sets de-

fined in terms of the feature coordinates of the

support vectors (i.e. the CloseToSV() fuzzy sets).

These later sets usually do not have a particular

meaning to the human expert.

• For problems with large input feature space di-

mensionality N the obtained rules involve N con-

junctive clauses and it is very difficult to compre-

hend them intuitively.

• When the number of support vectors becomes

large the corresponding large SVFI rule base im-

poses additional interpretability problems.

Therefore, the derivation of interpretable and com-

prehensible to the human expert fuzzy rules from the

SVFI rules is a very important task since it offers the

potentiality for a readable and intuitive knowledge rep-

resentation. The presented framework constructs rules

that are expressed in terms of concepts that the human

expert can understand easily. We develop a completely

novel and effective framework for the extraction of in-

terpretable rules from the SVFI when the interpretable

fuzzy sets for a feature can be prespecified by the human

expert.

Below we present the interpretable fuzzy system

construction algorithm in pseudocode format. We recall

that the main idea is to replace each of the SVFI clauses

CloseToSV(xf , zrf
) by FuzzyLinguisticVariable(xf ,

zrf
) if the feature dimension f of the support vector zr

(i.e. zrf
) attains a sufficiently high maximum member-

ship µFf,max
(zrf

) at the FuzzyLinguisticVariable fuzzy

set Ff,i.

Algorithm: Extraction of interpretable rules

from the SVFI rules

// Notation:

// zr, zrf
: the location parameter of the rth support

vector

// and the corresponding feature coordinate f of zr

// xf : the input value for the f feature

interpretableClauses = {};

ruleSupport = 1.0;

for all the features f of the support vector zr do

// replace the clause CloseToSV(xf , zrf
) with a possi-

ble interpretable clause

for the interpretable fuzzy set Ff,max of the fth feature

variable for which zrf
obtains the maximum member-

ship

(e.g. for the interpretable fuzzy sets HighExpression,

LowExpression a value 0.9 will attain maximum mem-

bership at the HighExpression set)

if µFf,max
(zrf

) > β then

// β is the formely described threshold parameter

/* the support vector feature value zrf
attains enough

membership to the interpretable fuzzy set Ff,max, thus

concatenate the new clause */

if Ff,max is not the default fuzzy set then

interpretableClauses = interpretableClauses and

(xf is Ff,i )

(e.g. xf can be a gene named BRC (i.e. Vk ≡ BRC)

and the newly added clause can be: BRC is HighEx-

pression)

// compute a measure of how much the new inter-

pretable rule is supported by the SVM inference rule

ruleSupport = ruleSupport*µFf,max
(zrf

)

endif;

else

/* if even one conjunctive clause cannot have a satisfac-

tory approximation with an interpretable fuzzy set (the

default set included) the whole Support Vector rule can-

not derive an interpretable rule */

interpretableClauses = {};

return null

end else;

end for;

if interpretableClauses != null)

/* interpretable clauses exist, construct the ”then” part

of the potential interpretable rule that will correspond

to the support vector. This construction proceeds by

first deciding if the possible rule is sufficiently significant

by using the relative magnitude of the Lagrange multi-

plier. For the positive case we derive the ”then” part

as Class = ”Positive” if the corresponding bi = αi · yi is

≥ 0 and Class = ”Negative” at the opposite case. */

5 Pseudo-Outer Product Evalua-
tion of the interpretable rules

Another approach for data-driven construction of fuzzy

rules is based on Hebbian like learning [1] and is referred



as the Pseudo Outer Product (POP) rule [11]. This ap-

proach evaluates the compatibility of all the possible

rules with the training data and keeps the most promis-

ing ones.

The objective of the Pseudo-Outer Product (POP)

rule evaluation phase is to compute the degree with

which each derived interpretable rule is supported by

the training set. The POP evaluation phase computes

for each training pattern the degree antecedentRuleFir-

ing with which the antecedent part of an interpretable

rule fires.

Denote by antecedentRuleFiring this degree. Sub-

sequently it checks whether the predicted class aggress

with the actual class of the training pattern. If so, it

adds the computed antecedentRuleFiring to the total

score over the training set, otherwise it subtracts it.

6 Results

At this section we demonstrate the potentiality of the

presented interpretable rule extraction algorithms from

the SVFI systems with two examples:

1. The exact discovery of the XOR boolean function

from synthetic data derived from a continuous do-

main XOR like functional.

2. The approximate uncovering of fuzzy rules that

implement a simple gene regulation network, from

data generated by sampling the original fuzzy

rules.

3. The discovery of useful and simple rules from a

real public domain gene expression dataset con-

cerning breast carcer tissue classification onto dif-

ferent subtypes.

Since the SVFI system implements accurately the RBF-

SVM classification decision function, all the results con-

cerning the generalization potential of the RBF-SVM [?]

are valid, and thus we do not elaborate on them. Instead

we focus on the results obtained from the interpretable

fuzzy rule extraction subsystem.

Figures from the results of the above ex-

amples are shown at the webpage http :

//prlab.ceid.upatras.gr/ katsanos/results/

6.1 XOR-Data: Exact discovery of the
XOR boolean function

For the XOR learning problem we use numerical data

obtained from the function y = −x1 · x2. Clearly this

function evaluates precisely the logical XOR for the

numbers -1 and 1 considering them as false and true

respectively. The other values of the output are classi-

fied as false or true depending on the sign of y, i.e. false

for the negative sign and true for the positive one. We

generated 50 examples by producing uniform random

values for x1 and x2 at the range [−1, 1], computing the

corresponding y = x1 · x2 and outputing as class label

the sign of y (i.e. sgn{y}).

On the contrary, the derivation of interpretable rules

from the SVFI rules .

Figure 1 demonstrates the training session with the

XOR-data(http : //prlab.ceid.upatras.gr/ katsanos/results/).

We can observe that the constructed SVFI system has

16 rules, one rule for every one of the 16 support vectors

constructed by the RBF-SVM learning algorithm. It is

apparent that these rules do not reveal anything about

the continuous XOR-like function that underlies the

production of the synthetic data. On the contrary, the

derivation of interpretable rules from the SVFI rules

clearly uncovers the XOR logical rules. At Figure 1,

the third window from the top, i.e. the ”Constructed

4 simple inference rules” window, displays clearly the

XOR logical rules.

6.2 Blind discovery of fuzzy rule sys-
tems

In order to test the efficiency of the interpretable SV-

based rule extraction approach we conducted experi-

ments with synthetic data generated by randomly sam-

pling the operation of known fuzzy rule systems. The

objective is to test the efficiency of the algorithms at

uncovering the fuzzy rules from which the data were

generated, by using only the data samples without any

a-priori knowledge about the data generating rules.

We use a simple gene regulation network as the gen-

erator of controlled synthetic data for training. The

small gene regulation example consists of three genes

treated as variables that receive continuous values at the

range -1 to 1, with -1 meaning totally underexpressed

(”Low”), 0 totally unaffected by the experiment and 1

totally overexpressed (”High”). The continuous range



of values between these extremes fuzzifies the concept

of gene expression, as usually, e.g. a value of 0.8 for

one gene signifies larger relative expression level at the

particular experiment from a value of 0.7. The GEn-

chancer is an enhancer gene i.e. one that its expres-

sion enhances the level of expression of the control gene

GControl. Similarly, the GRepressor gene is a suppres-

sor gene for GControl, i.e. its expression tends to block

the expression of the control gene GControl.

We generated training data sets by randomly sam-

pling the input variables GEnhancer and GRepressor

(taking about 50 samples). Consequently we conclude

at the value of GControl variable by evaluating the fuzzy

rule system. In order to treat the learning task as an

SVM classification problem we discretize the positive

cases of the outcome GControl to 1 (i.e. overexpres-

sion) and the negative one to -1 (i.e. underexpression).

Figure 2 illustrates the results of training with

these synthetic data. The upper screenshot displays

the rules of the example fuzzy rule system that is

used for the generation of the synthetic data (http :

//prlab.ceid.upatras.gr/ katsanos/results/). Addi-

tionally, the form of the corresponding fuzzy sets is also

plotted. The bottom screenshot illustrates the results

of the attempt to recover the original fuzzy rules from

the generated data alone. Although the system has not

discovered exactly the original rules, clearly the func-

tions of the Enchancer gene and the Repressor one with

respect to the control gene GControl are revealed. In

particular the first and third rule reveal qualitatively the

operation of the Enhancer gene to up-regulate the con-

trol gene, while the second and fourth rule discover the

role of the Repressor gene. We should note that by vary-

ing the specification of the interpretable fuzzy sets, the

system derives slightly different rule sets. These fuzzy

rule sets describe the properties of the data in terms of

the altered interpretable fuzzy sets.

6.3 Gene Expression Dataset

Below we describe an application for a gene expression

analysis task, and in particular to the discovery of rules

for the classification of breast cancer subtypes from gene

expression data. The data set analyzed were obtained

from the CD-ROM of the book of Sorin Draghici [12]

and concern the work of Hedenfalk [13]. Hedenfalk and

coworkers [13] studied gene expression, using spotted

cDNA arrays containing 6512 sequences representing

5361 unique genes, in in a total of 22 breast tumors

obtained from individuals of three categories:

1. with BRCA1 mutations (BRCA1 class,7 samples).

2. with BRCA2 mutations (BRCA2 class ,8 sam-

ples).

3. individuals which were wild type at these loci

(WildType class, 7 samples).

Histopathological and molecular evidence relating to

estrogen and progesterone receptors suggests that tu-

mors originating in individuals with BRCA1 mutations

are molecularly distinct from those with BRCA2 mu-

tations. One of the main goals of the gene expression

analysis is to further elaborate such hypotheses.

Applying the inference system we extracted discrim-

inating rules which involve genes that tend to follow the

significant gene list detected by Hedenfalk and cowork-

ers [13], quantitatively there is about 80% overlap. Since

we use the SVM learning in 2-class classification we

perform three classification experiments (i.e. BRCA1

vs BRCA2 and Wild Type, BRCA2 vs BRCA1 and

Wild Type and Wild Type vs. BRCA1 and BRCA2).

We observed a tendency of the three classifiers to use

the same genes, a fact that can have biological signif-

icance in terms of the operation of these genes at the

corresponding biological processes. By redefining the

concepts of Low and High gene expression with more

”strict” membership functions we extracted a smaller

number of rules, but we expect these rules to provide

more concise descriptions of the essential aspects of the

data.

The extraction of interpretable fuzzy rules for

BRCA1 discrimination is illustrated in Figure 3 (http :

//prlab.ceid.upatras.gr/ katsanos/results/). At the

bottom of the figure we illustrate the plot of the

interpretable fuzzy sets in terms of which the cor-

responding rules are stated. Figure 4 (http :

//prlab.ceid.upatras.gr/ katsanos/results/) demon-

strates the results obtained by redefining the member-

ship functions (plotted at the bottom). Finally, Figure

5 (http : //prlab.ceid.upatras.gr/ katsanos/results/)

illustrates the corresponding rules for the BRCA2 and

Wild Type cases.



7 Conclusions

The paper has presented a dual approach to the problem

of fuzzy system identification from training examples

that extends the work of [3] by building interpretable

fuzzy-rule systems on top of the SVFI algorithms pro-

posed in [3]. Future work continues with the elabora-

tion of the interpretable fuzzy system construction with

algorithms that adapt the interpretable membership

functions in the spirit of [5, 6]. The LibSVM based

extensions of Support Vector Learning for fuzzy iden-

tification and the fuzzy inference engine are available

upon request from the authors.
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