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Abstract—Complementary DNA microarray experiments 
are used to study human genome. However, microarray images 
are corrupted by spatially inhomogeneous noise that 
deteriorates image and consequently gene expression. An 
adaptive microarray image restoration technique is developed 
by suitably combining unsupervised clustering with the 
restoration filters for boosting the performance of microarray 
spots segmentation and for improving the accuracy of 
subsequent gene expression. Microarray images comprised a 
publicly available dataset of seven images, obtained from the 
database of the MicroArray Genome Imaging & Clustering 
Tool website. Each image contained 6400 spots investigating 
the diauxic shift of Saccharomyces cerevisiae. The adaptive 
microarray image restoration technique combined 1/a griding 
algorithm for locating individual cell images, 2/a clustering 
algorithm, for assessing local noise from the spot’s background, 
and 3/a wiener restoration filter, for enhancing individual 
spots. The effect of the proposed technique quantified using a 
well-known boundary detection algorithm (Gradient Vector 
Flow snake) and the information theoretic metric of Jeffrey’s 
divergence. The proposed technique increased the Jeffrey’s 
metric from 0.0194 bits to 0.0314 bits, while boosted the 
performance of the employed boundary detection algorithm. 
Application of the proposed technique on cDNA microarray 
images resulted in noise suppression and facilitated spot edge 
detection. 

I. INTRODUCTION 

ICROARRAY technology provides a useful tool to 
assay large-scale gene sequence and gene expression 

analysis [1], [2]. Molecular biologists and bioinformaticians 
are using microarrays for identifying genes in biological 
sequences and predict genes function within a larger system, 
such as the human organism [3]. Microarray analysis 
involves three basic stages namely experimental design, 
image processing, and gene quantification [4].  

Initially, the DNA obtained from the genes of interest 
(targets) is printed on a glass microscope slide by a robotic 
arrayer, thus, forming circular spots of known diameter. 
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Each spot serves as a highly specific and sensitive detector 
(probe) of the corresponding gene [5], [6]. In order to create 
a genome expression profile of a biological system with 
microarrays, the messenger RNA (mRNA) from a particular 
sample is isolated, is labelled using Cy3 (green) and Cy5 
(red) fluorescent dyes, and it is hybridized on the 
microarray. Following hybridization, the arrays are scanned 
by activation using lasers that excite each dye on the 
appropriate wavelength. The relative fluorescence between 
each dye on each spot is then recorded using methods 
contingent upon the nature of the labelling reaction i.e. 
confocal laser scanners, and Charged Couple Devices [7], 
[8]. 

The data output of such systems are two sample 12 to 16-
bit TIFF images, one for each fluorescent channel. The 
relative intensities of each channel represent the relative 
abundance of the DNA product in each of the two samples. 
Image processing and analysis plays a crucial role in the 
extraction and quantitative analysis of the relative 
abundance of the DNA product, since it affects the 
following steps that lead to gene expression and 
quantification. The basic stages in a microarray image 
processing workflow are: griding, spot segmentation, and 
intensity extraction [4], [9]-[11]. Griding is the process of 
assigning coordinates to each cell; the latter is a square ROI 
containing the pixels of both the spot and its background. 
Segmentation, classifies cell-pixels as foreground (spot-
pixels) or background. Intensity extraction calculates ratios 
of red to green fluorescence intensities for the foreground 
and background respectively.  

Data mining techniques [12] are employed  to group 
genes so that molecular biologists may extract meaningful 
biological information or make assumptions regarding 
unknown genes. Gene quantification is confounded by a 
number of technical factors, which operate during the 
fabrication, target labelling, and hybridization stages. 
Microarray images are corrupted by spatially 
inhomogeneous noise and by irregularities in the shape, size, 
and position of the spot [13], [14]. Another source of 
degradation is due to noise and MTF of the confocal laser 
scanner, employed as “reading” method. These sources of 
error may propagate and thus affect biological expression. 

In spite of the potential importance of image pre-
processing in correcting these error sources, existing 
software tools [15]-[20] pay little attention to pre-processing 
and focus mainly on spot localization and microarray image 
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segmentation. Few studies [21]-[24] have examined the 
impact of image pre-processing upon spot enhancement, 
however, we have found no studies to actually quantify the 
benefit of image enhancement in facilitating segmentation 
and consequently gene quantification.  

The aim of the present study is to evaluate the impact that 
image pre-processing techniques may have on improving the 
accuracy of spot segmentation and gene quantification. 
Consequently, this study proposes an adaptive microarray 
image restoration (A.µA.I.R) technique, which combines 1/a 
griding algorithm for locating individual cell images, 2/a 
clustering algorithm, for assessing local noise, and 3/a 
restoration filter, for enhancing individual cell images, in 
order to facilitate accurate spot detection and gene 
quantification. Objective quantification of restoration results 
was based on information theoretic measures. 

II. MATERIALS AND METHODS 
Microarrays used in this study comprised a publicly 

available dataset of images obtained from the database of the 
MicroArray Genome Imaging & Clustering Tool (MAGIC) 
website [25]. Each image contained 6400 spots investigating 
the diauxic shift of Saccharomyces cerevisiae. The 
particular dataset was selected because the original authors 
[26] used a common reference messenger RNA pool (green, 
Cy-3) to control for biological variability [27]-[29]. This 
particular design affords an adequate degree of replication 
required for the quantitative statistical assessment of the 
effects of pre-processing on the image segmentation and 
subsequent gene quantification.  

A. Griding 
The adaptive microarray image restoration technique, 

developed in the current study, initially applied an image 
griding procedure [30] on the images in order to locate spot 
sites (cell images).  

B. Clustering for local noise estimation  
Next, individual spots were crudely segmented from 

surrounding background by unsupervised segmentation, 
using the K-Means algorithm [31]. The latter is a least-
squares partitioning method that divides a collection of 
objects into K groups according to their pixel intensities, 
based on an iterative procedure, which minimizes a 
Euclidean distance. Subsequently, from each segmented 
cell-image local noise 2(2 )σ×  [32] was assessed from the 
spots background. This parameter was used to restore each 
cell image of the microarray image by employing the wiener 
image restoration technique.  

C. Cell image restoration 
The latter incorporates both the degradation function and 

statistical characteristics of noise into the restoration process 
as in (1): 
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where MTF  is the Fourier transform of the degradation 
function (Point Spread Function), considered constant across 
the image, G  is the Fourier transform of the degraded 
image. Subsequently, the restored image in the spatial 
domain is obtained by the inverse Fourier transform of (1).  

An estimation of the degradation function MTF in (1) 
was modeled as a low pass Butterworth filter: 
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where is the degree of the filter, v is the frequency, and n
cof the cut-off frequency [32]. MTF was then obtained by 

(3)  
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and 
2 2u v N+ <=  (4) 

where, N is the dimension of the cell-image. 
All algorithms were implemented using Matlab custom-

made code. 

D. Evaluation 
The effect of the A.µA.I.R was tested by 1/applying a 

Gradient Vector Flow (snake) [33] boundary detection 
algorithm on both the original and the processed microarray 
images and 2/applying a metric to both images, the Jeffrey's 
(J) measure of divergence  [34], [35], for estimating the 
‘goodness’ of segmentation in each cell image. In turn, this 
is an indication as to the accuracy of spot detection and gene 
quantification.  

E. Cell-image segmentation 
Twenty randomly selected cell-images from the original 

microarray image and the corresponding processed cell-
images were segmented by the snake algorithm, which 
determined boundary points separating the spot from its 
background in each cell image. All boundary points were 
referred to the original cell-images, since intensities in the 
processed cell images were altered by the restoration 
process.  

F. Quantification of the benefit 
Following segmentation, foreground (spot) and 

background intensity values for the common reference 
channel (green, Cy-3) were extracted. Those values were 
used to form two density distributions employing a non- 
parametric kernel density estimation method [36]. The 
distance between those two distributions was determined 
employing the Jeffrey's (J) measure of divergence, shown in 
(5): 
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Where pS,i and pB,i are the spot and background density 
distributions respectively. Higher values of J correspond to 
more distant distributions and consequently to more accurate 
segmentation, considering that intensities are evaluated on 
the original image alone. Those J values were further tested, 
using Wilcoxon non-parametric statistical test, in order to 
provide the statistical significance of the proposed 
methodology.  

III. RESULTS 
The image degradation function was optimally designed 

by a first degree (n=1) low-pass Butterworth filter using 
fco=0.3xN, with N being the dimension of the square cell 
image; non-square cell-images were zero padded.  Figure 1, 
shows the result of the A.µA.I.R. 

 
Figure 2 depicts the results of the snake boundary 

detection algorithm for two different spots using as 
initialization points the spots’ sites located by the griding 
procedure. 

 
Table 1 shows the values of the Jeffrey’s divergence 

between spot and background log intensity distributions for 

the snake segmentation procedure. 
Differences between J distances were found to differ at a 

statistical significant level of p<0.001, employing 20 
randomly selected cell images. 

 
TABLE I 

JEFFREY’S MEASURE OF DIVERGENCE 

 Original Spot Restored Spot 

Spot 1 0.0449 0.0520 
Spot 2 0.0182 0.0298 
Spot 3 0.0217 0.0282 
Spot 4 0.0126 0.0166 
Spot 5 0.0136 0.0162 
Spot 6 0.0262 0.0326 
Spot 7 0.0209 0.0329 
Spot 8 0.0194 0.0314 

Typical values (measured in bits) of divergence 
between signal and background intensities for original 
and adaptive A.µA.I.R restored spots respectively 

IV. DISCUSSION 
In the present work, the performance of an adaptive 

microarray image restoration technique was explored for 
evaluating the impact that image pre-processing techniques 
may have on improving the accuracy of spot segmentation 
and gene quantification. The proposed technique combined  
1/a griding algorithm for locating individual cell images, 2/a 
clustering algorithm, for assessing local noise, and 3/a 
restoration filter, for enhancing individual cell images, in 
order to facilitate accurate spot detection and gene 
quantification.  

By the visual inspection of the original and the 
corresponding A.µA.I.R restored sections, shown in Figure 
1, it can be observed that the proposed technique removed 
noise components while preserved the sharpness of spot 
edges. The adaptive wiener filter has been previously 
employed in enhancing microarray images [21] and it has 
been found to perform worse than the stationary wavelet 
transform. This is, however, expected, since noise has been 
modelled as an additive quantity that it is locally assessed, 
taking no provision of existing structural noise. In contrast, 
in the present work, noise was considered spatially 
inhomogeneous, and thus it was locally assessed, and 
structural noise was not incorporated by focusing on the 
cell-image background. This rendered the result of the 
A.µA.I.R successful enough to boost the performance of the 
employed boundary detection algorithm.    

a. Original b. Restored FWHM=0.3 

  
Fig. 1. Original and Adaptive Wiener restored sections of 
microarray images for the optimally designed degradation 
function according to the Butterworth Filter.

  

  
Fig. 2. GVF segmentation results based 
on the original (left column) and 
A.µA.I.R. (right column) restored images 
for two different spots. 

Objective quantification for both the original and the 
enhanced images, based on the Jeffrey’s divergence, 
confirmed the influence of the proposed technique in the 
subsequent steps of the microarray pipeline (e.g. 
segmentation, gene quantification) as Table 1 shows. The 
implemented technique performed as anticipated by 
increasing the divergence (J) between the distributions of 
signal and background intensity distributions.  



 
 

 

V. CONCLUSION 
 

In the present work an adaptive microarray image 
restoration technique has been presented. Application of the 
proposed technique on cDNA microarray images resulted in 
noise suppression while boosted spot edge detection. 
Improved accurate spot detection was objectively quantified 
by employing information theoretic metrics.  
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