
Detection of QRS complexes in ECG signals based on Poisson
Transform and Root Moments

Lena Wahab

Abstract— This paper is concerned with the detection of
QRS complexes in an electrocardiogram (ECG) waveform. The
precision in the identification of QRS complexes is of great
importance for the reliability of an automated ECG analyzing
system and thus, for the diagnosis of cardiac diseases. Many
algorithms have been developed during the last thirty years,
each of which has different strengths and weaknesses. In the
proposed algorithm a threshold is set and the crossing points
between it and the QRS complexes are determined. This has
the advantage of ensuring that the R-peaks are contained
between the crossing points provided that these are determined
accurately. The use of Poisson techniques coupled with Root
Moments theory enables us to map this part of the problem
into a problem of estimating the zeros of a polynomial that lie
on the circumference of the unit circle. This locator polynomial
has an order equal to twice the total number of peaks within
a data block. The roots of the locator polynomial produce the
bounds on the R-peaks mentioned above. The effectiveness of
the proposed algorithm is tested by using recordings obtained
from the MIT-BIH arrythmia database.

I. INTRODUCTION

The detection of the R-peaks and consequently of the
QRS complexes in an ECG signal provides information
on the heart rate, the conduction velocity, the condition of
tissues within the heart as well as various other abnormalities
and, thus, it supplies evidence to support the diagnoses of
cardiac diseases. For this reason, it has attracted considerable
attention over the last three decades.
The algorithms in the relevant bibliography adapt a range
of different approaches to yield a procedure leading to
the identification of the waves under consideration. These
approaches are mainly based on derivative-based techniques
[1]–[3], classical digital filtering [4]–[9], adaptive filtering
[10], [11], wavelets [12]–[15], neural networks [16], [17],
hidden Markov models [18], mathematical morphology [19],
genetic algorithms [20], Hilbert Transform [21], [22], syn-
tactic methods [23], maximum a posteriory estimation [24]
and zero-crossing-based identification techniques [25].
In the non-syntactic algorithm presented here, the high accu-
racy achieved in detecting QRS complexes is accompanied
with robustness and low computational complexity.
At the beginning of the proposed algorithm, the enhance-
ment of the QRS part of the ECG is achieved by the
reduction of the level of the P and T waves, followed by
suppression of some noticeable disturbances in the signal.
These disturbances result mainly due to baseline drift, power
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line interference and interferences from other physiological
sources [25]. Bandpass filtering is typically used to attenuate
the frequencies related to the above noise sources which lie
outside the frequency band occupied by the QRS complex. In
our approach, the resulted filtered QRS complex is smoothed
by considering its Poisson transform. Afterwards a threshold
is set and from each couple of the points produced by the
intersection of the threshold line with the ECG signal, the
corresponding R-peak is estimated as the midpoint. The main
idea, behind the novel steps introduced at this point, is
that the unit circle can be seen as the z-transform of the
threshold line which has been shifted to meet the x-axis.
Thus, the zero-crossings can be identified from the location
of the zeros in the unit circle. The identification of the zero-
crossings leads to the estimation of the R-peaks. This idea
is implemented through the use of relationships taken from
the Poisson Transform and Root Moments theory.
The strength of the proposed algorithm lies on the fact that
the location of the R-peaks is bounded from above and below
by the location of the cross-over points, hence none of the
peaks can be ignored.
A set of recordings from the MIT-BIH arrythmia database
[26] is used to measure the accuracy of the algorithm and
its reliability is evident by the results obtained.
This paper is structured as follows:
In Section II, the Poisson Integral Transform is presented
for the case of a real, causal and stable sequence. Then,
the concept of the Poisson P kernel is introduced so as
the Poisson P Transform to be seen as the result of a
convolution. This section also presents in a very compact
way important aspects related to the Root moments theory.
A set of important relationships which will be used in the
implementation of the proposed algorithm is given.
Section III, deals with the main core of the paper and is fo-
cused on describing the steps consisting of the preprocessing
stage dealing with feature extraction and the decision making
stage involved in the R-peak detection. The evaluation of the
performance of the proposed algorithm is dealt in Section IV.

II. FUNDAMENTAL RELATIONSHIPS

A. Poisson Transform Relationships
Let us assume a causal sequencef [n], that is, f [n] = 0

∀n< 0, wheren∈Z. As known, thez-transform of the above
sequence is defined as the power series

F(z) =
∞

∑
n=0

f [n]z−n, (1)

where z is a complex variable. The Poisson P integral
transform for any real, causal and stable sequencef [n] is



given by

F(re jω ) =
1

2π

∫
π

−π

F(Rejµ )PR,r (ω −µ)dµ, (2)

wherere jω , Rejµ are the polar forms of two points on the z-
plane, lying on concentric positively oriented circles centered
at the origin with radiir, R correspondingly (r > R≥ 1) and
PR,r(ω) symbolizes the Poisson P Kernel given by

PR,r (ω) =
r2−R2

R2 + r2−2Rrcosω
. (3)

By assuming the unit circle (R = 1) and using (2), the
following log-magnitude relationship is obtained

ln |F(re jω )|= 1
2π

∫
π

−π

ln |F(ejµ )|P1,r (ω −µ)dµ, (4)

which can be written as

ln |F(re jω )|= 1
2π

ln |F(ejµ )| ∗P1,r (ω). (5)

Thesmoothingproperty of the Poisson P kernel, highlighted
in [27], justifies the use of the above equation in the
algorithm under consideration.

B. Root Moments Relationships
Consider an nth degree polynomial

F(z) = zn + p1zn−1 + p2zn−2 + ...+ pn, (6)

with roots {r i}, for i = 1, · · · ,n, where {pi} is a set of
coefficients characterizing the above polynomial. Then, the
(first order) root moments ofF(z), denoted here bySF

m, is
given by

SF
m = rm

1 + rm
2 + ...+ rm

n =
n

∑
i=1

rm
i , (7)

where m is an integer. At this stage we present some
relationships involving the root moments which are to be
used later in the development of the proposed algorithm.
F(z) can be represented as a product of

F(z) = K
n1

∏
i=1

(1−αiz
−1)

n2

∏
i=1

(1−βiz
−1), (8)

= K ·Fin(z) ·Fout(z).

where K is a real constant,αi < |z| (∀i = 1, · · · ,n1) and
βi > |z| (∀i = 1, · · · ,n2) are respectively the roots ofF(z)
inside and outside a circle having a radius of|z| and n1
and n2 are correspondingly the number of zeros inside and
outside the above circle (n = n1 +n2).
Taking the logarithm of (8) and expanding the term through
the use of Laurent Series, it is possible to show that,

ln[F(z)] = lnK1−n2 lnz−
∞

∑
m=1

(
SFin

m

m
z−m+

SFout
−m

m
zm

)
, (9)

where the root momentsSm of the minimum phase factor
denoted bySFin

m and the root momentsS−m of the maximum
phase factor represented bySFout

−m can be calculated through
the use of (7) andK1 is a constant. Evaluating ln[F(z)]|z=ejω

yields

ln[F(ejω )] = lnK1−n2 jω

−
∞

∑
m=1

(
SFin

m

m
e− jmω +

SFout
−m

m
ejmω ). (10)

The logarithm of the magnitude as well as the phase of
F(ejω) are given respectively from the following equations

ln |F(ejω )|= lnK1−
∞

∑
m=1

(
SFin

m

m
+

SFout
−m

m
)cos(mω), (11)

∠F(ejω ) =−n2ω +
∞

∑
m=1

(
SFin

m

m
−

SFout
−m

m
)sin(mω). (12)

From (11) and (12) the following equations are obtained,

SFin
m +SFout

−m =−m
π

∫
π

−π

ln

[
|F(ejω )|

K1

]
cos(mω)dω, (13)

SFin
m −SFout

−m =
m
π

∫
π

−π

[n2ω +∠F(ejω )]sin(mω)dω (14)

[28], [29]. The above relationships provide the tools for
estimating the roots of a polynomial which lie on the cir-
cumference of a unit circle and are going to be implemented
in the developed algorithm.

III. A LGORITHM FOR DETECTING THER-PEAKS

The focus of the proposed algorithm is to identify the
crossing points after the appropriate threshold cutting the
QRS complexes, is chosen. The implementation of this target
is achieved through the following steps indicated in the block
diagram of the proposed detector presented in Fig. 1.
At the beginning, the intention is focused on the isolation of
the QRS complexes. As known, the frequency content of P
and T waves is in the range of 0.5 Hz to 10 Hz, the base
line and motion artifacts have a power spectra of 0.5 Hz to
7 Hz [30] and the power line interference occupies 50 Hz to
60 Hz [31]. The QRS complex spectra may have frequency
components of up to 40 Hz [1]. In order to attenuate the
frequencies characterizing the different types of noise as well
as the frequencies occupied by the P and T waves, a bandpass
filter is used and the cutoff frequencies are set at 18 and
35 Hz. For illustration, a portion of the resulted normalized
bandpass filtered ECG signal is presented in Fig. 2(b). The
next step is to assume the conversion of the above filtered
ECG signal to a representation which can be considered as
a time signal that imitates a frequency magnitude response.
This conversion is necessary since the magnitude response
is an even and continuous function with the first order
derivatives at 0 andπ equal to zero [28]. In order to ensure
that the above conditions are satisfied, the signal is buffered
at both ends, time-reversed and its absolute value is taken.
Evidently, the obtainedmodifiedECG signal (Fig. 3(a)), will
have double the number of R-peaks contained in the raw
signal. Moreover the R-peaks will be located symmetrically
with respect to the axis defined by the end of the buffering.
ThemodifiedECG signal is then convolved with the Poisson
P kernel. By settingr → 1, the resulted signal becomes
smoother and thus the QRS complexes become broader
although the location of their peaks is not affected.
Once the abovesmoothed modifiedECG signal is obtained
(Fig. 3(b)), a threshold is then set and the crossing points
between it and the QRS complexes under consideration are
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Fig. 1. Block diagram of the Detector

determined. This has the advantage of ensuring that the R-
peaks are contained between the crossing points provided
that these are defined accurately. From each couple of the
points produced by the intersection of the threshold line with
the QRS complex, the middle point corresponding to the
relevant R-peak should be estimated.
Through shifting thesmoothed modifiedECG signal on the
y-axis, by the height of the threshold (Fig. 4(a)), the cutting
points obtained from the intersection of the threshold with
the signal can be seen as zero-crossings. The magnitude of
the shifted smoothed modifiedsignal, denoted by|F(re jω)|
and considered as thefinal preprocessedsignal is presented
in Fig. 4(b).
The final aim is the estimation of the middle point for each
pair of zero crossings. The identification of the zero crossings
can be achieved by mapping this problem into the problem
of estimating the zeros on the unit circle of the polynomial
|F(ejω)|, i.e. by defining a polynomial|g(ejω)| given by

|g(ejω)|=
k

∏
i=1

|(1−ejφi e− jω)|, (15)
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Fig. 2. Record 100: (a) Raw ECG (b) Bandpass filtered ECG

whereejφi symbolizes the i-th zero on the unit circle andk
is an even number, representing the total number of zeros.
Sincer → 1, |F(re jω)| can approximate faithfully the mag-
nitude response|F(ejω)|. The transition from|F(ejω)| to the
locator polynomial|g(ejω)| which defines the location of the
zero crossings can be realized by using aspects adopted from
the Root Moments theory, through a technique described in
details in [32].
The procedure leading to the estimation of the mid point
from each pair of zero crossings is based on the following
observations.
If φi ,φi+1 denote the location on the unit circle of two zeros
belonging to the same neighborhood andφl denotes the
location on the unit circle of their midpoint,

φl =
φi +φi+1

2
, (16)

we have approximately,

(1−ejφi e− jω)(1−ejφi+1e− jω)' (1−ejφl e− jω)2. (17)

Let |g̃(ejω)| be the locator polynomial which locates the
position of the mid points. Evidently,

|g(ejω)|=
k
2

∏
l=1

|(1−ejφl e− jω)|2 = |g̃(ejω)|2 (18)

and using (13) the following equation is obtained,

Sg
m = 2Sg̃

m⇒ Sg̃
m =

Sg
m

2
. (19)

Thus, by calculating the root moments of|g(ejω)|, the
estimation of the root moments of the locator polynomial
|g̃(ejω)| can be achieved.
By computing the root moments of|g̃(ejω)| and using the
results obtained from (10), the corresponding coefficients
can be estimated. The magnitude response of ˜g(ejω) (refer
to Fig. 5(a)) can be obtained from the above coefficients.
The minimum points of the resulted magnitude response
correspond to the detection of the R-peaks (Fig. 5(b)).

IV. RESULTS AND DISCUSSION

The accuracy of the algorithm was tested by applying
it to all the records obtained from the MIT-BIH arrythmia
database [26]. The above database contains 48 records and
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each of them is about 30 minutes long. The ECG signals are
sampled at 360 Hz. The algorithm was implemented through
the use of MATLAB.
To assess the performance two statistical measurements were
used [33]. These are the Sensitivity (Se), which gives the
fraction of real events that are correctly detected and it is
defined by,

Se=
TP

TP+FN
, (20)

and the Positive Predictivity (+P) which is the fraction of
detections that are real events and it is defined by,

+P =
TP

TP+FP
, (21)

where FN (False Negatives) denotes the number of missed
detections, FP (False Positives) represents the number of
extra detections and TP (True Positives) is the number of
the correctly detected QRS complexes.
The r parameter of the Poisson P transform was adjusted to
be close to 1 for the testing of these records.
Table I shows the results of the algorithm for all the records
of the MIT-BIH arrythmia database. The average Sensitivity
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of the algorithm is 99.64 % and its Positive Predictivity is
99.73 %. Most of the FN and FP QRS complexes were found
in records 104, 203 and 207. The ECG waveforms in the
above records are characterized by high complexity which
leads to intrinsic difficulties in detecting the QRS complexes.
There are also some other records like 108, 200, 201, where
because of they inherent too much noise the application of
the present algorithm gave fairly good but not perfect results.
Fig. 6 and Fig. 7 present part of the records 203 and 108
respectively. In spite of the baseline drift and the complex
form of the ECG which is evident in the relevant figures, the
proposed algorithm performed quite well.
For the case of the very noisy records 105 and 108, com-
parisons between the performance of the proposed algorithm
and that of a selection of very well known algorithms can
be made by looking at Table II. More specifically,

• For the record 105, both the +P and the Se achieved
with the use of our algorithm reach very high levels.
This record was classified as one of the most noisy of
the files considered.

• For the record 108, the +P as well as the Se correspond-
ing to the algorithm presented in this paper also obtain
very high values. Record 108 is characterized by high
noise which makes the detection of QRS complexes
very difficult.

The effort for possible improvements in the algorithm should
be directed towards more effective filtering in the preprocess-
ing stage as well as better threshold adjustment. In this way,
there is a good chance of achieving even higher detection
rates.
Both the robustness of the algorithm (is not too sensitive
in the parameters) and the speed of the detection (low
complexity of the algorithm and hence low computational
load) can be characterized as very satisfactory.

V. CONCLUSION

A new algorithm is presented for the detection of the QRS
complexes in an ECG signal. This algorithm is based on the
determination of the crossing points between the ECG wave-
form and the threshold, by using the Poisson P transform and



TABLE I

PERFORMANCE OF THEALGORITHM

Record No. TP FN FP Se(%) P(%)

100 2273 0 0 100.00 100.00

101 1863 2 7 99.89 99.63

102 2187 0 0 100.00 100.00

103 2084 0 0 100.00 100.00

104 2195 34 41 98.47 98.17

105 2556 16 4 99.38 99.84

106 2014 13 4 99.36 99.80

107 2137 0 0 100.00 100.00

108 1751 23 16 98.70 99.09

109 2529 3 4 99.88 99.84

111 2124 0 0 100.00 100.00

112 2539 0 0 100.00 100.00

113 1795 0 0 100.00 100.00

114 1876 3 0 99.84 100.00

115 1951 2 0 99.90 100.00

116 2395 17 0 99.30 100.00

117 1535 0 0 100.00 100.00

118 2286 2 0 99.91 100.00

119 1987 0 0 100.00 100.00

121 1859 4 0 99.79 100.00

122 2476 0 0 100.00 100.00

123 1518 0 0 100.00 100.00

124 1618 1 0 99.94 100.00

200 2597 4 4 99.85 99.85

201 1985 15 4 99.25 99.80

202 2131 5 0 99.77 100.00

203 2908 72 61 97.58 97.95

205 2647 9 16 99.66 99.40

207 2249 83 112 96.44 95.26

208 2926 29 5 99.02 99.83

209 3003 2 0 99.93 100.00

210 2631 19 5 99.28 99.81

212 2747 1 0 99.96 100.00

213 3246 5 1 99.85 99.97

214 2247 15 0 99.34 100.00

215 3361 2 0 99.94 100.00

217 2206 2 0 99.91 100.00

219 2284 3 0 99.87 100.00

220 2048 0 0 100.00 100.00

221 2424 3 0 99.88 100.00

222 2477 6 3 99.76 99.88

223 2602 3 0 99.88 100.00

228 2048 5 22 99.76 98.94

230 2256 0 2 100.00 99.91

231 1571 2 0 99.87 100.00

232 1775 5 6 99.72 99.66

233 3060 19 0 99.38 100.00

234 2749 4 0 99.85 100.00

Total 109321 420 312 99.64 99.73
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Fig. 6. Record 203: (a) Raw ECG (b) Estimated R-peak locations
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the root moments theory. This approach has the advantage of
ensuring that the R-peaks are contained between the crossing
points when these are determined accurately. The algorithm
is evaluated for a number of records obtained from the MIT-
BIH Arrythmia database. The accuracy of the new algorithm
in detecting the QRS complexes is very high due to the
criteria used (average Sensitivity of 99.64 % and average
Positive Predictivity of 99.73 %).

TABLE II

COMPARISON OF THEPERFORMANCE

Recordings
Algorithms 105 108

Se(%) P(%) Se(%) P(%)
Proposed Algorithm 99.38 99.84 98.70 99.09

Zero Crossing Counts [34] 99.49 98.71 98.24 97.85
Pan-Tompkins [35] 99.15 97.46 98.77 89.86

Hamilton-Tompkins [36] 99.15 97.97 97.39 97.23
Fuzzy reasoning [37] 99.33 97.97 99.01 98.61

Filter Bank [1] 99.26 97.58 96.28 92.17
Genetic Algorithm [20] 99.81 96.76 98.58 92.40
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