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Abstract—The current study investigates whether texture 
properties of the tissue surrounding microcalcification (MC) 
clusters can contribute to breast cancer diagnosis. The case 
sample analyzed consists of 100 mammographic images, 
originating from the Digital Database for Screening 
Mammography (DDSM). All mammograms selected 
correspond to heterogeneously and extremely dense breast 
parenchyma and contain subtle MC clusters (46 benign and 54 
malignant, according to database ground truth tables). Regions 
of interest (ROIs) of 128x128 pixels, containing the MCs are 
used for the subsequent texture analysis. ROIs are 
preprocessed using a wavelet-based locally adapted contrast 
enhancement method and a thresholding technique is applied 
to exclude MCs. Texture features are extracted from the 
remaining ROI area (surrounding tissue) employing first and 
second order statistics algorithms, grey level run length 
matrices and Laws’ texture energy measures. Differentiation 
between malignant and benign MCs is performed using a k-
nearest neighbour (kNN) classifier and employing the leave-
one-out training-testing methodology. The Laws’ texture 
energy measures demonstrated the highest performance 
achieving an overall accuracy of 89%, sensitivity 90.74% (49 of 
54 malignant cases classified correctly) and specificity 86.96% 
(40 of the 46 benign cases classified correctly). Texture analysis 
of the tissue surrounding MCs shows promising results in 
computer-aided diagnosis of breast cancer and may contribute 
to the reduction of benign biopsies.

I. INTRODUCTION 
AMMOGRAPHY is currently the most effective 
imaging modality for breast cancer screening. 

However, the sensitivity of mammography is highly 
challenged by the presence of dense breast parenchyma, 
which deteriorates both detection and characterization tasks 
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[1], [2]. Computer Aided (CA) detection systems have been 
developed to aid radiologists in detecting mammographic 
lesions, characterized by promising performance [3]-[6]. CA 
diagnosis/characterization systems for aiding the decision 
concerning biopsy and follow-up are still under development 
[1]. 

Various CA diagnosis algorithms have been proposed for 
the characterization of microcalcifications (MCs), an 
important indicator of malignancy. These algorithms are 
based on extracting image features from regions of interest 
(ROIs) and estimating the probability of malignancy for a 
given MC cluster. A variety of computer-extracted features 
and classification schemes have been used to automatically 
discriminate between benign and malignant MC clusters. 
The majority of these studies have followed two approaches. 

The first approach is based on computer extracted 
morphology/shape features of individual MCs or of MC 
clusters [7]-[16], since morphology is one of the most 
important clinical factors in breast cancer diagnosis. CAD 
schemes that employ the radiologists’ ratings of MCs 
morphology have also been proposed [17-19]. The second 
approach employs texture features extracted from ROIs 
containing MC clusters [9], [20]-[24]. 

Some studies have compared morphological vs. textural 
features but the results are differentiated with respect to the 
features investigated, the classifiers used and datasets 
analyzed. A combination of both morphological and textural 
features has also been studied, providing promising results in 
breast cancer diagnosis [9], [24].  

The highest performance achieved up to now (in terms of 
area under receiver operating characteristic curve, Az= 0.98), 
has been reported by a morphological analysis of MCs also 
incorporating age in the classification scheme [15]. 
However, the reproducibility of such schemes depends on 
the robustness of the MC segmentation algorithm. 
Furthermore, in case of dense breast parenchyma abutting 
MCs, the classification task is being highly deteriorated 
resulting in low specificity values and thus in unnecessary 
biopsies [1], [2]. 

The texture analysis approach seems to overcome this 
limitation since no segmentation stage is required. The 
rationale of using texture features is based on capturing 
changes in the texture of the tissue surrounding the MCs. 
Most texture-based classification studies include MCs in the 
regions to be further analyzed; however, this rationale 
introduces bias since the MC, a tiny deposit of calcium in 
breast tissue, can neither be malignant nor benign. The tissue 
surrounding or underlying the MC can be malignant or 
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benign. This tissue is also the one subjected to 
pathoanatomical and immunochemistry analysis to derive a 
benign or malignant outcome. 

To the best of the authors’ knowledge, there is only one 
study based on texture analysis of the tissue surrounding 
MCs for breast cancer diagnosis [25]. This study used a 
dataset of 54 scout views acquired from digital stereotactic 
equipment before needle insertion. Textural features 
extracted are based on co-occurrence matrices and fractal 
geometry. Classification was performed with Linear and 
Logistic Discriminant analysis. Their work has successfully 
validated the hypothesis that tissue surrounding MCs can be 
used for breast cancer diagnosis. 

The current study investigates whether texture properties 
of the tissue surrounding MC clusters on screening 
mammograms can be used for breast cancer diagnosis thus, 
providing to radiologist an estimation of malignancy prior to 
the biopsy procedure. Mammograms of high breast density 
were selected since the presence of dense breast parenchyma 
deteriorates the characterization task of MC clusters and 
yields low specificity values [1]. 

The steps of the proposed method are illustrated in 
Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Flowchart of the preprocessing and classification task performed in 
this study.  

II. MATERIAL AND METHODS 

A. Case Sample 
The case sample consists of 100 mammographic images 

originating from the Digital Database for Screening 
Mammography (DDSM) [26], digitized with the LUMISYS 
300 scanner at 12-bit pixel depth and spatial resolution 50 
µm. All mammograms selected contain MC clusters (46 
benign and 54 malignant, according to database ground truth 

tables) and correspond to heterogeneously dense and 
extremely dense breast parenchyma (density 3 and 4 
according to the ACR BIRADSTM lexicon [27]).  

 

B. Enhancement  
Images are preprocessed using a wavelet-based spatially 

adaptive method for mammographic contrast enhancement 
[28], [29]. This method is selected since it has shown high 
performance in enhancing MCs as compared to other 
enhancement methods proposed for mammographic 
enhancement [30]. The method is based on local 
modification of multiscale gradient magnitude values 
provided by the redundant dyadic discrete wavelet 
transform. Specifically, a denoising process is firstly 
performed taking into account local signal in breast area and 
noise standard deviation estimated in the mammogram 
background. Contrast enhancement is accomplished by 
applying a local linear mapping operator on denoised 
wavelet gradient magnitude values; coefficient mapping is 
controlled by a local gain limit parameter. The processed 
image is derived by reconstruction from the modified 
wavelet coefficients. Preprocessing was performed on 
rectangular 600x600 pixels ROIs containing the MCs instead 
of the whole image to reduce calculation time. Figure 2 
presents a ROI of 600x600 pixels containing the MC cluster 
in original image (a) and the corresponding processed ROI 
(b). 

 

Original image 

C. Thresholding for Excluding MCs 
An experienced radiologist defined manually a ROIrad 

containing the MCs on each processed 600x600 ROI. To 
avoid high grey level value pixels corresponding to normal 
tissue identified as MCs, a simple thresholding algorithm 
was empirically applied on ROIrad to exclude MCs (fig. 2c). 
The resulting binary image produced is shown in figure 2(d). 
By reversing the binary image and multiplying with the 
original 600x600 ROI the resulted image ROI, named 
surrounding tissue ROI (ST-ROI) provided in fig. 2(e), is 
similar to the original one without MCs. The use of most 
robust segmentation technique was not deemed necessary for 
the aim of this study, since neither morphology analysis of 
individual MCs nor of MC clusters is performed. 

 

ROI including MCs 

Enhancement  

Thresholding for 
excluding MCs 

Texture analysis of tissue 
surrounding MCs 

Classification of tissue 
surrounding MCs D. Texture Analysis of Tissue Surrounding MCs 

Texture analysis is performed in a 128x128 pixels 
subregion of each ST-ROI (fig. 2f). Specifically, the 
128x128 pixels ROI was placed in such a way to contain the 
cluster at its center. Most of the clusters in the dataset 
analyzed could be contained within a 128x128 ROI. For the 
clusters that are substantially larger than a single ROI, 
additional ROIs containing the remaining parts of the cluster 
are defined and processed in the same way as the other 
ROIs. The texture feature values extracted from the different 
ROIs of the same cluster are averaged and the average 
values are used as the feature values for that cluster.   

In this study four categories of textural features are 
extracted: First Order Statistics (FOS), Grey Level Co-



 
 

 

occurrence Matrices (GLCM), Grey Level Run Length 
Matrices (GLRLM) and Law’s Texture Energy Measures 
(LTEM). 

1) First Order Statistics Features: FOS provides 
different statistical properties (4 statistical moments) of the 
intensity histogram of an image [31]. They depend only on 
individual pixel values and not on the interaction or co-
occurrence of neighboring pixel values. In this study, four 
first order textural features were calculated: Mean value of 
gray levels (1), Standard Deviation of gray levels (2), 
Kurtosis (3) and Skewness (4). 

2) Grey Level Co-occurrence Matrix Features: The 
GLCM is a well-established robust statistical tool for 
extracting second order texture information from images 
[32], [33]. The GLCM characterizes the spatial distribution 
of gray levels in the selected ST-ROI subregion. An element 
at location (i,j) of the GLCM signifies the joint probability 
density of the occurrence of gray levels i and j in a specified 
orientation θ and specified distance d from each other. Thus, 
for different θ and d values, different GLCMs are generated. 
In this study, four GLCMs corresponding to four different 
directions (θ=0°, 45°, 90° and 135°) and one distance (d=1 
pixel), were computed for each selected ST-ROI subregion. 
Thirteen features were derived from each GLCM.  
Specifically, the features studied are: Energy, Entropy, 
Contrast, Local Homogeneity, Correlation, Shade, 
Promenance, Sum of Squares, Sum Average, Sum Entropy, 
Difference Entropy, Sum Variance and Difference Variance. 
Four values were obtained for each feature corresponding to 
the four matrices. The mean (M) and range (R) of these four 
values were calculated, comprising a total of twenty-six 
second order textural features. 

3) Gray Level Run Length Matrix Features: The 
GLRLM provides information related to the spatial 
distribution of gray level runs (i.e. pixel-structures of same 
pixel value) within the image [34]. Textural features 
extracted from GLRLM evaluate the distribution of small 
(short runs) or large (long runs) organized structures within 
ST-ROI subregion. From each ST-ROI subregion, five run-
length features were generated: Short Runs Emphasis (SRE), 
Long Runs Emphasis (LRE), Grey Level Non-Uniformity 
(GLNU), Run Length Non-Uniformity (RLNU) and Run 
Percentage (RPERC). Four values were computed for each 
feature, corresponding to the angles of 0, 45, 90 and 135◦. 
The mean (M) and range (R) of these four values were 
calculated, comprising a total of 10 features. 

4) Laws’ Texture Energy Measure Features:  According 
to the method proposed by Laws, textural features were 
extracted from images that had been previously filtered by 
each one of the 25 Laws’ masks or kernels [35]. These 
filtered images were characterized as Texture Energy images 
(TE images). Averaging the filtered images corresponding to 
symmetrical kernels (such as R5L5 and L5R5), and taking 
into account that 20 out of 25 kernels are symmetric one to 
each other, 15 TR images were produced. From each 1 of the 
15 TR images, 5 first-order statistics (mean, standard 
deviation, range, skewness and kurtosis) were computed, 
giving in total 75 Laws’ textural features: 5 sets of 15 
features each, with each 15-feature set corresponding to each 

one of the 5 first-order statistics, i.e. 15 features for the 
Mean value (M), 15 features for the Standard deviation 
(STD), 15 for the Range (R), 15 for the Skewness (S) and 15 
for the Kurtosis (K). 
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Fig. 2. (a) 600x600 pixels ROI containing a malignant MC cluster in 
original mammogram (DDSM: B_3406_RIGHT_CC), (b) processed 
ROI, (c) binarization on manually defined ROI, (d) binarized MC 
cluster on 600x600 pixels ROI, (e) surrounding tissue ROI (ST-ROI), 
(f) magnified 128x128 pixels subregion of ST-ROI. 

E. Classification of Tissue Surrounding MCs 
A k-nearest neighbor (kNN) classifier was used for the  
 
classification of tissue surrounding MCs. kNN makes a 

class assignment based on the classes of the k training 
samples nearest to the test/unknown sample. In this study, 
the inverse distance-weighted voting was used [36]. In this 
approach, closer neighbors get higher votes.  

Specifically, the vote of the kth neighbor is defined as: 
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where dk is the Euclidean distance of the kth  neighbor from 
the test sample. The votes of each class are summed and the 
test sample is assigned to class with the highest sum of 



 
 

 

votes. Specifically, the Decision function for classification is 
given by: 
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where n and m are integers ranging from 0 up to k, satisfying 
the equation n+m=k. In this study, k ranged from 1 up to 31 
neighbors. If Decision is greater than zero, the test sample is 
assigned to class A (malignant); otherwise, the test sample is 
assigned to class B (benign).  

Feature selection was performed by means of exhaustive 
search. Best subset of features was selected with respect to 
maximum accuracy achieved. The training and testing of the 
classifier was performed using the leave-one-out 
methodology. Specifically, all cases of the sample were 
tested. When the λth case was being tested the training set 
consisted of all cases except from the λth case.  

The four categories of textural features were tested 
separately and the performance of the classifier for each 
textural features category was evaluated by means of 
sensitivity, specificity and overall classification accuracy. 

III. RESULTS 
Table I summarizes the results of the classification 

performance of the four categories of textural features 
investigated, in terms of sensitivity, specificity and overall 
accuracy. 

The Laws’ Texture Energy Measures demonstrated the 
highest performance with respect to overall accuracy (89%); 
high specificity was achieved (86.96%) while maintaining 
high sensitivity (90.74%). Co-occurrence matrices features 
provided a sufficient classification performance (82% 
accuracy). This category of features have been previously 
used for breast cancer diagnosis, extracted from ROIs 
containing [9], [20], [21], [24] or excluding [25] the MCs, 
demonstrating a comparable performance. First order 
statistics provided an overall accuracy of 79% with high 
sensitivity (92.59%). The fact that Ductal Carcinoma in Situ 
(DCIS) occurs overwhelmingly in the mammographically 
dense areas of the breast [37], justifies the inclusion of Mean 
grey level value in the best feature set of the First order 
statistics. The Run Length matrices features cannot 
efficiently distinguish malignant from benign MCs (63% 
accuracy).  

IV. DISCUSSION AND CONCLUSIONS 
In this study, a texture analysis approach for breast 

cancer diagnosis is presented. The method is based on the 
analysis of the tissue surrounding the MC cluster for 
prediction of malignancy. This hypothesis has been 
motivated by the fact that a MC cluster (tiny deposits of 
calcium in breast tissue) can neither be malignant nor 
benign. This characterization corresponds to the tissue 
surrounding and underlying the MC cluster. Furthermore, 
this tissue is the one subjected to pathoanatomical analysis to 
be further characterized as malignant or benign. 

A similar study has been previously reported by Thiele et 
al. [25], analyzing the surrounding tissue as depicted on 
scout views from the stereotactic procedure; they achieved a 
sensitivity of 89% and specificity of 83% in a dataset of 54 
cases. In this study we analyzed the surrounding tissue as 
depicted on screening mammograms, in order to provide to 
radiologist an aid for estimation of malignancy, prior to the 
biopsy procedure. Texture analysis was performed on small 
ROIs (128x128 pixels), where the MCs have been 
previously excluded, to ensure that the tissue being analyzed 
is the one subjected to pathoanatomical analysis. Four 
categories of textural features were investigated, with the 
Laws’ texture energy measures providing the highest 
classification performance. 

While a direct comparison with other texture based 
classification studies is not possible due to different 
classification algorithms, textural features and datasets (MC 
clusters subtlety and breast density types) used, the 
performance attained by the proposed method is comparable 
to the performance of the following reported studies. 

Dhawhan et al. [20] used second order histogram-based 
features and wavelet-based features extracted from ROIs 
containing the MCs, and obtained an area under ROC curve 
(Az) 0.86 for classification of 191 ‘difficult-to-diagnose’ 
cases. Chan et al. [21] used co-occurrence matrices-based 
features extracted from ROIs including the MC cluster and 
achieved an Az=0.84 in a dataset of 145 cases; when 
combined both textural and morphological features they 
achieved an Az=0.89, which increased to 0.93 when 
averaging discriminant score from all views of the same 
cluster (100% sensitivity with 50% specificity). Kramer and 
Aghdasi [22] used multiscale statistical texture signatures 
(based on the co-occurrence matrix), as well as wavelet-
based texture signatures from ROIs containing the MCs, and 
compared the performance of both a kNN and a neural 
network classifier; the neural network perform best 
achieving a 94.8% overall classification accuracy. Santo et 
al. [23] combined the output of two classifiers for 
classification of MCs. The first classifier used shape and 
texture features of individual MCs and the second one used 
features characterizing the cluster. Their multiple expert 
system achieved sensitivity 75.7% and specificity 73.5% (Az 
=0.79) on a database of 40 mammograms. Zadeh et al. [24] 
compared the performance of four feature sets: texture 
features (co-occurrence matrices-based) extracted from 
individual MCs and ROIs containing the cluster, shape 
quantifiers of MCs, wavelet and multi-wavelet features; the 
multi-wavelet features outperformed the other methods 
achieving an Az=0.89.  

The rest of the MCs computer diagnosis algorithms, 
reported in the literature, have focused on morphology 
analysis of individual MCs and MC clusters. Comprehensive 
reviews can be found elsewhere [38], [39], however, some 
representative studies are provided below for comparison 
purposes. 

Shen et al. [7] developed a set of shape features of 
individual MCs, achieving 100% overall accuracy in 
classification of 143 individual MCs. Yiang et al. [8] used 8 
features of MC clusters in a neural network classifier, and 



 
 

 

achieved an Az =0.92 in a dataset of 53 patients.  Veldkapm 
et al. [11] used cluster distribution, shape and location 
features for classification of MCs. A patient-based 
classification was performed by combining information of 
both views (MLO and CC), achieving a value of Az 0.83.  
Leichter et al. [12] used features that reflect the internal 
architecture within a MC cluster and stepwise discriminant 
analysis for optimum feature selection and classification. 
Their approach achieved an Az=0.98. Verma and Zakos [13] 
developed a computer-aided diagnosis system for digital 
mammograms based on fuzzy neural and feature extraction 
techniques. They used a fuzzy technique to detect 
microcalcification patterns and a neural network to classify 
them. Their work achieved a classification rate of 88.9% for 
classifying the microcalcification as benign or malignant.   
Lee et al. [14] designed a shape recognition-based neural 
network for capturing geometric information of MCs. They 
achieved sensitivity 86.1% and specificity 71.4% in a dataset 
of 40 mammograms. Papadopoulos et al. [16] used features 
characterizing individual MCs and MC clusters; they 
employed a rule-based system, an artificial neural-network 
and a support vector machine for classification of MC 
clusters and achieved an Az=0.81.  

As compared to the morphology-based studies, the 
proposed method performs within the reported ranges. 
However, we should note that the feasibility of the proposed 
texture-based classification scheme was demonstrated on a 
difficult dataset since all mammograms analyzed correspond 
to heterogeneously dense and extremely dense breast 
parenchyma. On the other hand, the success of the various 
morphology-based classification schemes depends strongly 
on the robustness of the segmentation algorithm [1], [40], 
[41]. Especially in case of dense breast parenchyma abutting 
the MCs, classification is a challenging task due to difficulty 
induced in the segmentation process. The proposed method 
by requiring a coarse rather than an accurate segmentation of 
individual MCs, seems to overcome the limitation of dense 
breast parenchyma.  

In conclusion, the proposed method has shown promising 
results suggesting that texture analysis of tissue surrounding 
MC clusters can contribute to computer-aided diagnosis of 
breast cancer. Completion of the proposed method should 
include a larger dataset and investigation of additional 
classification schemes as well as textural features (wavelet 
and multi-wavelet). Validation of the hypothesis of the 
surrounding tissue texture analysis will be accomplished by 
investigating the correlation between computer extracted 
textural features and pathoanatomical findings.  

 

ACKNOWLEDGMENT 
This work is supported by the European Social Fund 

(ESF), Operational Program for Educational and Vocational 
Training II (EPEAEK II), and particularly the Program 
PYTHAGORAS I (Β.365.011). We also wish to thank the 
staff of the Department of Radiology at the University 
Hospital of Patras for their contribution in this work. 

REFERENCES 
[1] P. M. Sampat, M. K. Markey, and A. C. Bovik, “Computer-aided 

detection and diagnosis in mammography” in Handbook of Image and 
Video Processing, 2nd ed., A. C. Bovik Ed. Academic Press, 2005, pp. 
1195-1217. 

[2] D. D. Adler and M. A. Helvie, “Mammographic biopsy 
recommendations”, Curr. Opin. Radiol., vol 4., pp. 123-129, 1992. 

[3] M. L. Giger, N. Karssemeijer and S. G. Armato, “Computer-aided 
diagnosis in medical imaging”, IEEE Trans. on Med. Imaging, vol. 20, 
pp. 1205-1208, 2001. 

[4] M. L. Giger, “Computer-aided diagnosis of breast lesions in medical 
images”, Comput. Science Engineering, vol. 2, pp. 39-45, 2000. 

[5] K. Doi, H. MacMahon, S. Katsuragawa, R. M. Nishikawa and Y. 
Jiang, “Computer-aided diagnosis in radiology: potential and pitfalls”, 
Eur. J. Radiol., vol. 31, pp. 97-109, 1999. 

[6] C. J. Vyborny, M. L. Giger and R. M. Nishikawa, “Computer-aided 
detection and diagnosis of breast cancer”, Radiologic Clinics of North 
America, vol. 38, pp. 725-740, 2000. 

[7] L. Shen, R. M. Rangayyan and J. E. L. Desautels, “Application of 
shape analysis to mammographic calcifications”, IEEE Trans. Med. 
Imaging, vol. 13, pp. 263-274, 1994. 

[8] Y. Jiang, R. M. Nishikawa, D. E. Wolverton, C. E. Metz, M. L. Giger, 
R. A. Schmidt et al., “Malignant and benign clustered 
microcalcifications: automated feature analysis and classification”, 
Radiology , vol. 198, pp. 671-678, 1996. 

[9] H. P.  Chan, B. Sahiner, K. L. Lam, N. Petrick, M. A. Helvie, M. M. 
Goodsitt and D. D. Adler, “Computerized analysis of mammographic 
microcalcifications in morphological and texture feature spaces”, Med. 
Phys., vol. 25, pp. 2007-2019, 1998. 

[10] O. Tsujii, M. T. Freedman and S. K. Mun, “Classification of 
microcalcifications in digital mammograms using trend-oriented radial 
basis function neural network”, Pattern Recognition, vol. 32, pp. 891-
903, 1999. 

[11] W. J. H. Veldkamp, N. Karssemeijer, J. D. M. Otten and J. H. C. L. 
Hendriks, “Automated classification of clustered microcalcifications 
into malignant and benign types”, Med. Phys., vol. 27, pp. 2600-2608, 
2000. 

[12] I. Leichter, R. Lederman, S. Buchbinder, P. Bamberger, B. Novak, S. 
Fields, “Optimizing parameters for computer-aided diagnosis of 
microcalcifications at mammography”, Acad. Radiol., vol. 7, pp. 406-
412, 2000. 

[13] B. Verma, J. Zakos, “A computer-aided diagnosis system for digital 
mammograms based on fuzzy-neural and feature extraction 
techniques”, IEEE Trans. Inform. Technol. Biomed., vol. 5, pp. 46-54, 
2001. 

[14] S. K. Lee, P. Chung, C. I. Chang, C. S. Lo, T. Lee, G. C. Hsu, C. W 
Yang, “Classification of clustered microcalcifications using a Shape 
Cognitron neural network”, Neural Netw., vol. 16, pp. 121-132, 2003. 

[15] M. Kallergi, “Computer-aided diagnosis of mammographic 
microcalcification clusters”, Med Phys. vol. 31, pp. 314-326, 2004. 

[16] A. Papadopoulos, D. I. Fotiadis and A. Likas, “Characterization of 
clustered microcalcifications in digitized mammograms using neural 
networks and support vector machines”, Artif. Intell. Med., vol. 34, pp. 
141-150, 2005. 

[17] L. V. Ackerman, A. N. Mucciardi, E. E. Gose and F. S. Alcorn, 
“Classification of benign and malignant breast tumors on the basis of 
36 radiographic properties”, Cancer, vol. 31, pp. 342–352, 1973. 

[18] J. A. Baker, P. J. Kornguth, J. Y. Lo and C. E. Floyd, “Artificial 
neural network: improving the quality of breast biopsy 
recommendations”, Radiology, vol. 198, pp. 131-135, 1996. 

[19] Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt and C. E. 
Metz, “Artificial neural networks in mammography: application to 
decision making in the diagnosis of breast cancer”, Radiology, vol. 
187, pp. 81-87, 1993. 

[20] A. P. Dhawan, Y. Chitre, and C. Kaiser-Bonasso, “Analysis of 
mammographic microcalcifications using gray-level image structure 
features”, IEEE Trans. Med. Imaging, vol. 15, pp. 246-259, 1996.  

[21] H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. 
Adler and M. M. Goodsitt, “Computerized classification of malignant 
and benign microcalcifications on mammograms: texture analysis 
using an artificial neural network”, Phys. Med. Biol., vol. 42, pp. 549-
567, 1997. 



 
 

 

[22] D. Kramer, F. Aghdasi, “Texture analysis techniques for the 
classifcation of microcalcifcations in digitized mammograms”, in 
Proc. 5th IEEE AFRICON Conference Electrotechnical Service for 
Africa, Cape Town, 1999, pp. 395-400. 

[23] M. De Santo, M. Molinara, F. Tortorella and M. Vento, “Automatic 
classification of clustered microcalcifications by a multiple expert 
system”, Pattern Recognition, vol. 36, pp. 1467-1477, 2003. 

[24] H. Soltanian-Zadeh, F. Rafee-Rad and D. Pourabdollah-Nejad, 
“Comparison of multiwavelet, wavelet, Haralick, and shape features 
for microcalcifcation classifcation in mammograms”, Pattern 
Recognition, vol. 37, pp. 1973–1986, 2004. 

[25] D. L. Thiele, C. Kimme-Smith, T. D. Johnson, M. McCombs and L. 
W. Bassett, “Using tissue texture surrounding calcification clusters to 
predict benign vs malignant outcomes”, Med. Phys., vol. 23, pp. 549-
555, 1996. 

[26] M. Heath, K. Bowyer, D. Kopans, R. Moore, P. Kegelmeyer, “The 
digital database for screening mammography”, in Proc. 5th Int. 
Workshop on Digital Mammography, IWDM, Toronto, Canada, 2000, 
pp. 212-218. 

[27] American College of Radiology (1998), Illustrated Breast Imaging 
Reporting and Data System (BI-RADS), American College of 
Radiology, third edition. 

[28] P. Sakellaropoulos, L. Costaridou and G. Panayiotakis, “A wavelet-
based spatially adaptive method for mammographic contrast 
enhancement”, Phys. Med. Biol., vol. 48, pp. 787-803, 2003. 

[29] L. Costaridou, P. Sakellaropoulos, S. Skiadopoulos and G. 
Panayiotakis,  “Locally adaptive wavelet contrast enhancement”, in 
Medical Image Analysis Methods, L. Costaridou, Ed. Taylor & 
Francis Group LCC, CRC Press, Boca Raton, FL., 2005, pp. 225-270. 

[30] L. Costaridou, S. Skiadopoulos, A. Karahaliou, P. Sakellaropoulos, 
and G. Panayiotakis, “On the lesion specific enhancement hypothesis 
in mammography”, in Proc. 14th International Conference of Medical 
Physics, ICMP, Nuremberg, Germany, 2005, pp. 949-950. 

[31] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, Prentice-
Hall, Inc., New Jersey, 2002, pp. 76-142. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

[32] R. M. Haralick, K. Shanmugam and I. Dinstein, “Textural features for 
image classification”, IEEE Trans. System Man. Cybernetics, vol. 
SMC-3, pp. 610–621, 1973. 

[33] R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving co-
occurrence matrix feature discrimination”, in Proc. 3rd Conference on 
Digital Image Computing: Techniques and Applications (DICTA’95), 
Brisbane, Australia, 1995, pp. 643-648. 

[34] M. Galloway, “Texture analysis using gray level run lengths”, 
Comput. Graphics Image Proc., vol. 4, pp. 172-179, 1975. 

[35] K. I. Laws, “Texture energy measures”, in Proc. DARPA Image 
Understanding Workshop, Los Angeles, 1979, pp. 47-51. 

[36] S. A. Dudani, “The distance weighted nearest neighbor rule”, IEEE 
Trans. System Man.  Cybernetics, vol. SMC-6, pp. 325-327, 1976. 

[37] G. Ursin, L. Hovanessian-Larsen, Y. R. Parisky, M. C. Pike, and A. H. 
Wu, “Greatly increased occurrence of breast cancers in areas of 
mammographically dense tissue”, Breast Cancer Research, vol. 7, pp. 
R605-R608, 2005.  

[38] H. D. Cheng, X. Cai, X. Chen, L. Hu, X. Lou, “Computer-aided 
detection and classification of microcalcifications in mammograms: a 
survey”, Pattern Recognit., vol. 36, pp. 2967-2991, 2003. 

[39] E. Sakka, A. Prentza, D. Koutsouris, “Classification algorithms for 
microcalcifications in mammograms (Review)”, Oncol. Rep., vol. 
15(spec no), pp. 1049-1056, 2006. 

[40] W. J. H. Veldkamp, N. Karssemeijer, “Influence of segmentation on 
classification of microcalcifications in digital mammography”, in 
Proc. 18th Annual International Conference of IEEE Engineering in 
Medicine and Biology Society, Amsterdam, Netherlands, 1996, pp. 
1171-1172. 

[41] S. Paquerault, L. M. Yarusso, J. Papaioannou, Y. Jiang, R. M. 
Nishikawa, “Radial gradient-based segmentation of mammographic 
microcalcifications: Observer evaluation and effect on CAD 
performance”, Med. Phys., vol.31, pp. 2648-2657, 2004.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

TABLE I 
BEST SUBSET OF FEATURES FOR THE FOUR CATEGORIES OF TEXTURAL FEATURES STUDIED 

AND PERFORMANCE ACHIEVED IN TERMS OF SENSITIVITY, SPECIFICITY AND OVERALL ACCURACY 
 

Feature 
category Best Features Sensitivity (%) Specificity (%) Accuracy (%) 

FOS Mean value of grey level 
Skewness    (k=5) 92.59 63.04 79 

GLCM Mean of Difference Entropy 
Range of Local Homogeneity  
Range of Difference Variance 

(k=5) 85.18 78.26 82 

GLRLM Mean of SRE  
Mean of LRE 
Mean of RPERC 

(k=3) 72.22 52.17 63 

LTEM Skewness from S5L5 
Mean from R5L5 
Mean from L5L5 
STD from S5L5 
STD from W5L5 

(k=5) 90.74 86.96 89 

k = number of neighbors.  
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