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Abstract—In screening X-ray mammography two different 
views are captured of both breasts. First the individual images 
are analysed independently looking for signs of cancer, but due 
to the high false positive hits good result can be achieved only 
by joint analysis of the images. One such approach is based 
upon the experience that masses and calcifications emerge on 
both views; so if no matching pair is found, the given object is a 
false positive hit. Since 3D correspondence is theoretically 
impossible, a “2.5D” reference system (based on the line parallel 
to the pectoral muscle and placed in the nipple) is evolved to 
find corresponding regions on the two images – matching a 
stripe on one view of a breast to any segment on another view of 
the same breast.

Since masses have a distinctive texture, further examination 
is possible within this stripe. Using intensity, co-occurrence and 
GLD (“gray level differences”) based texture features our 
algorithm performed 23% loss of false negative hits keeping 
93% of true positive ones. These features are characteristic for 
usual masses but not for spiculated (“stellar”) ones therefore 
adding such features are needed. Kegelmayer et al. suggested 
using the ALOE (“analysis of local oriented edges”) texture 
feature that is based on the fact that linear structures have the 
same direction in normal tissues but significantly vary in 
speculated ones (due to their stellar shape) hence variance of the 
orientation histogram is distinctive for them. Since classical 
orientation estimation methods based on differential filtering 
(eg. Prewitt, Sobel or filtering with Gauss derivatives) result in 
noise for flat areas and do not provide information far from 
edges, the use of EdgeFlow for ALOE is more than a rational 
choice. Adding this feature the loss of false positive hits 
increased to 31% while still keeping 92% of true positive ones.

I. INTRODUCTION

REAST cancer is one of the most frequent cancers and 
the leading cause of mortality for women, affecting 

almost one eighth of them and giving one third of cancers. 
Evidences show that X-ray mammography is the only 
reliable screening method giving nearly 95% chance of 
survival within 5 years due to early detection. [1] Due to the 
huge number of images captured per year and the high 
number of false positive diagnoses done by doctors (80–
93%), development of mammographic decision support 
systems is under heavy research.

During X-ray screening two different views are captured 
of each breast: a CC (cranio-caudal) from above and a 
leaning lateral view, the MLO. The two most important 
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symptoms are microcalcifications (small spots that have high 
intensity compared to their environment) and masses (big, 
high intensity blobs). Our results and other publications on 
this topic show that obtaining high hit rate while keeping the 
number of false positive detections low is extremely difficult 
– alike human evaluation. [2,3]

Microcalcification and mass detector algorithms 
developed in our department also have quite a good hit rate 
(nearly 95%) but the false positive hits per image are 3 per 
image in the case of microcalcifications and 6 in the case of 
masses. [2,3] However – this rate can be reduced if we 
manage to make use of an experience of radiologists: 
microcalcification clusters and masses should appear on both 
views of the same breast. Therefore finding a pair to a mass-
or microcalcification-candidate should increase the 
probability that the hit is a true positive one.

Since in X-ray mammography perfect 3-D reconstruction 
is impossible due to breast deformation, we implemented a 
simple “2.5-D” positioning system between CC and MLO 
images for this joint analysis. [12] This means that we can 
assign a stripe on the MLO image to every mass-candidate 
on the CC image and vice versa. The stripe is based on the 
position of the nipple and the angle of the pectoral muscle. 
According to this reference system we could make a 
hypothesis: “the distances of a mass (measured from the 
tangent that is parallel to the pectoral muscle and placed in 
the nipple) in the CC and MLO pictures are equal”. This 
hypothesis was tested by statistical analysis and was found to 
be true.

Due to the fact that masses have characteristic texture, the 
reference system can be improved by textural analysis. This 
is done through the following steps. First the image is 
segmented by EdgeFlow [4], and then texture features are 
calculated for each segment, k-means clustering is applied to 
these features resulting better segmentation. Once we have 
good quality segmentation, we recalculate features for the 
new segments. After these preliminary steps we establish the 
reference system and for each mass-candidate we try to find 
pairs within the corresponding stripe on the other view –
based on texture features. (Note that this pairing may result 
no pair at all.)

Previously [12] we used texture features that were 
characteristic only for high intensity masses. However – in 
some cases masses have a “stellar” shape (sometimes even 
without a blob in the middle). Kegelmeyer et al [5] suggested 
using the ALOE (analysis of local oriented edges) texture 
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feature for finding these signs on the image. Combining his 
idea with orientation information gained from EdgeFlow 
seems to give a more than 30% better performance with 
shorter running times than comparable methods.

II. EDGEFLOW

Image segmentation is beset with difficulties. In fact edge 
detection and segmentation are ill-posed problems, since it is 
usually undefined what we regard as an edge or one segment. 
EdgeFlow [4] is an algorithm that is based on well known 
techniques as differential filtering and orientation estimation 
but is also enhanced with a clever energy propagating trick 
that eliminates usual problems of noise and image-dependent 
thresholding. The only practical free parameter of it is the so 
called scale (σ) that focuses edge detection in a given scope. 
(The higher σ is, the larger edges it finds.)

Intensity edges: The EdgeFlow algorithm is based on a 
differential filtering if edges are defined as local gradient 
maxima. The differential filter used here is the derivative of 
the 2D Gaussian function: Gσ(x,y).
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where s = (x,y) is a pixel, I(x,y) is the image value at (x,y) 
pixel, and n


represents the unit vector in the θ direction.

Edge flow vector: The traditional edge detection approach 
uses a threshold. If the edge energy falls above this value for 
a given pixel, this pixel is considered as a point of an edge. 
EdgeFlow also uses thresholding but only after an energy 
propagation trick with which edge energies are shifted and 
accumulated during iterative steps. The direction of this 
propagation is based on probabilities. P(s,θ) gives the 
probability of finding an edge in the direction θ within the 
distance d = 4σ:
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is a kind of predictive coding error in direction θ at scale 
σ, and
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 is derived from E(s) and θ(s). 

Its magnitude is proportional to the edge energy, and its 

phase is directed towards the nearest edge on the given scale 
σ. (Summing up probabilities instead of finding the 
maximum reduces the effects of error in prediction.)
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Edge flow propagation and boundary detection: Edge 
flow vectors are propagated with an iterative algorithm:
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The iteration stops when no change occurs. Edge detection 
ends with the usual thresholding for the magnitudes of the 
edge flow vectors. According to [4,6] and our experiments a 
fixed value can usually be found for this purpose, there is no 
need for any kind of analysis of the resulting image.

Results of EdgeFlow are used in 3 cases: 1) the pectoral 
muscle is found by a high scale filtering, 2) segmentation is 
based on smaller scale filtering, 3) orientation information 
from a low scale filtering is used for ALOE features.

III. THE REFERENCE SYSTEM

For single view analysis three landmarks are named in 
publications [5]: the pectoral muscle, the nipple and the 
boundary of the breast. These landmarks segment the breast 
to its anatomical regions. Many complex algorithms tried to 
establish 3-D reconstruction [6,7] of breast segments. With 
3-D reconstruction the shape of the mass, microcalcification 
distributions and matching objects could be determined, 
which could help to distinguish between malignant/benign 
cases and to reduce false positive cases. Because of the 
difficulties of 3-D reconstruction our main aim was only to 
build a simple “2.5-D” positioning system, which can find 
the approximate corresponding region to a region on the 
other view. CC and MLO are two-dimensional projections of 
the three dimensional object, therefore a stripe will 
correspond to a region on the other image. The system works 
similar in concept to the procedure a radiologist applies at 
comparing the two pictures: once he/she found a suspicious 
symptom, he/she starts looking for a similar one on the other 
view within a given stripe. The stripe should be parallel to 
the pectoral muscle and should have the same distance from 
the nipple as the original sign had on the first view. So, the 
reference system is to calculate the position of this stripe. 
The algorithm is founded on three simple hypotheses:
1. The position of the nipple can be estimated by laying a 

tangent on the breast border parallel with the pectoral 
muscle. 



2. The pectoral muscle on a CC image is assumed to be the 
vertical axis.

3. The distance covered from the nipple perpendicular to 
the pectoral muscle on MLO approximately corresponds 
to the distance measured up on the horizontal axis from 
the nipple on CC.

The first step of the algorithm is to find the angle enclosed 
by the pectoral muscle and the horizontal axis on MLO 
views. With the angle a tangent is laid on the breast border 
marking the nipple. The distances of the observed region 
from the tangent (u and v) – are measured. The same 
distances are measured up on the perpendicular line to the 
tangent from the nipple of the other view. The two points and 
the angle of the tangent mark out the stripe. (See Fig. 1.) The 
correctness of the reference system was tested by a statistical 
analysis. Cases with 400μ/pixel resolution (600*400 pixels) 
from the DDSM database [8] were selected indiscriminately, 
where these contained only one pathological growth on each 
views according to the radiologists’ assessments. Therefore 
it could be assumed, that those two masses or calcification 
clusters correspond to each other on the two views. The pixel 
corresponding to the centroid of the growth on the MLO was 
determined, and the deviation of the result from the centroid 
of the growth on the CC was measured in pixel. The results 
(See Fig. 2.) show that the assumption of the hypotheses was 
correct though there is some variance caused by the failures 
of the algorithm, wrong radiologist assessment or the flaw of 
the hypotheses (because of breast deformation) for a few 
cases. To compensate the effect of variance the width of the 
stripe can be increased by a constant or by a number relative 
to the width of the stripe to counteract the deviation of the 
algorithm.

Pectoral muscle is a roughly triangular region with high 
intensity and is located at the upper corner of the MLO 
mammogram. It has a higher intensity than the surrounding 
tissues therefore its border appears as a sharp intensity 
change, as an edge. Therefore boundary detection –
Edgeflow – is the first step of finding the pectoral muscle, 
then the elimination of weak edges with cutting at a 
threshold. Finding the nipple and transformation in the 
reference system: The nipple is marked out by a tangent 
parallel to the pectoral muscle laid on the breast border. 
With the knowledge of the nipple position and the angle of 
pectoral muscle connection between the two views is 
provided by simple coordinate transformations.

The correctness of the reference system and our 
hypothesis were tested by a statistical analysis. Results 
showed that the assumption was correct though there is some 
variance caused by the failures of the algorithm, wrong 
radiologist assessment or the flaw of the hypothesis (because 
of breast deformation) for a few cases. To compensate these 
effects the width of the stripe can be increased by a constant 
or by a number relative to the width of the stripe to 
counteract the deviation of the algorithm.

Fig. 1. The corresponding stripe on the CC of a selected 
region on the MLO

Fig. 2. Histogram of errors in reference system positioning 
(total: 1159 cases)

IV. PAIRING OF MASSES

Making use of the reference system one could easily 
improve results of any mass- or calcification-detection 
algorithm simply by checking if any symptom-candidate on 
one view has any possible pairs on the other view – that is “if 
any candidate falls in the corresponding stripe”. If a pair is 
found, the identifying probability of the given mass should 
be increased, otherwise decreased.

The expression identifying probability is used since 
finding pair to a mass merely says that there is something 
characteristic in the breast – because it can be seen from both 
views – but it might be either malignant or benign. Alike – if
no pair is found, it says the mass supposed to be recognized 
on one of the images is only virtual, its appearance is the 
result of some overlaying tissues. Note also that this 
correspondence can solely be done for “clear” breasts. For 
dense ones even experienced radiologists can rarely find the 
mass on both images.

However – masses  have a distinctive texture that makes it 
possible to do texture-based pairing within the stripe. Since 
the given mass detecting algorithms are fairly characteristic 
in size and shape of the identified mass, a good segmenting 
algorithm is also needed beforehand. We used the results of 
EdgeFlow for this purpose.

The first question arising when trying to apply EdgeFlow 
is the selection of the proper scale. After running it for a 
wide variety of mammographic images and range of scales, 



scales 1, 2 and 3 are seemed to be significant in our case. 
Since the EdgeFlow algorithm itself only detects edges, some 
further steps are necessary to create a segmentation from its 
output: line segments should be linked creating continuous 
borders and closed segments. With some basic 
morphological operations (removing isolated pixels, dilation, 
removing disjoined line segments) one can get a practically 
good segmentation, but the result is sometimes too detailed, 
or may also contain unduly small segments. Computing some 
texture features and using clustering for the segments based 
on them can solve these problems. Note that in this case the
number of clusters is not equal to the numbers of segments 
created after merging the members of each cluster, since 
these members may form more isolated groups on the image. 
With about maximum 100 isolated areas the resulting 
segmentation proved to be adequate for our aims. By binary 
search for the number of clusters needed this number can be 
approximated in 2-3 steps. (The number of segments on the
original segmentation varies from about 80 up to even 300. 
Small regions are forced to merge even if this causes less 
than 100 segments.) Texture features used are as follows: 
mean of intensity, variance of intensity, mean and variance 
of co-occurrence values, mean and variance of grey-level-
differences. (Co-occurence matrix and grey-level differences 
are image features used with great success for mass detection 
in the project, one can find descriptions in [9].) For 
clustering four methods have been tested: single linkage 
hierarchic, k-means, fuzzy k-means and subtractive 
clustering [9,10,11]. According to our experiments, k-means 
has been chosen for its simplicity and reliability.

Once a good segmenting algorithm and characteristic 
texture features are given, the accuracy of mass detecting can 
be increased by texture based matching on different views.
Matching goes by the following steps: [12]

1. In the beginning results of a mass detection algorithm 
are given – usually a binary mask covering the mass-
candidate area with the probability of that hit (Fig. 3b 
and d). (During the matching mass-candidates of one 
image called source are to be paired with mass-
candidates of the other one called target.)

2. A mass-candidate – in our example the upper one on 
Fig. 3b – is chosen for investigation from the source
image.

3. The reference system is established for both views. 
(This assigns a stripe to the mass chosen. See Fig. 3e)

4. We identify possible pairs of all the segments on the 
source image overlapped by the source mask (the mass-
candidate). This pairing for a segment goes by 
identifying all segments that are close in texture feature 
(threshold is set dynamically depending on the minimal 
distance), and not significantly far in intensity, size or 
distance (assigned by the reference system) from the 
original segment. (See Fig 3f – segments overlapped by 
the stripe are highlighted; and Fig. 3g, where segments 

eliminated by the rule based system are not shown and 
intensity is proportional with similarity.)

5. Taking the hits on the source image one by one, we 
examine if its pairs overlap with any of the mass 
candidates on the target image. If so, the similarity of 
this pair is the mean of those nonzero elements on the 
non-binary mask (see Fig. 3h, where texture feature 
based thresholding is applied) that are covered by the 
given mask pair on the target image. (We found two 
pairs, one of them cover the mass candidate on the target 
image. This fact increases the probability that both of 
them are true positive hits.)

6. This pairing is done in reverse direction as well. Mass-
candidates that are not paired are dropped.

Fig. 3. Steps of pairing

We tested the above detailed algorithm on 363 pairs of the 
DDSM database. In this test set cancer is marked on both 
pictures for 97 pairs, marked only on one image (though it is 
visible on the other also) in 20 cases, and in 2 more cases the 
cancer is visible only on one image of the pair. The set 
consisted of 3618 mass candidates that means 5 candidates 
per image.

Using the pairing algorithm we could reach a performance 
of 92% TP / 23% FP (while keeping 92% of true positive 
hits we could eliminate 23% of false positive ones) or with 
stricter parameter setting 96% TP / 12 % FP.



There seemed to be two ways to gain better results: either 
by doing a cleverer pairing or by adding even more 
characteristic features. Since these features are characteristic 
only for high intensity masses, while other types also exist, 
the latter seemed to be more promising.

V. USING EDGEFLOW BASED ALOE AS TEXTURE FEATURE

Analysing our results we found that our texture features 
are not characteristic enough for distinguishing normal tissue 
from masses – especially in cases where the mass is not the 
usual high intensity homogenous blob. If the breast tissue 
also has high intensity or the mass is a form of “architectural 
distortion” (it consist only of radial stellar extensions without 
a high intensity core in the middle), our pairing algorithm 
pairs malignant segments with normal tissue with a higher 
probability. Therefore using such spiculated characteristic 
features is also needed.

Kegelmeyer et al. suggested using ALOE (analysis of 
local oriented edges) as such a feature. The basic idea of 
ALOE is as follows. Edges, linear structures in normal tissue 
of the breast tend to have the same direction. On the other 
hand: spiculated lesions usually have a radial form, or at 
least its extensions have a wider variety in direction. This 
variation can easily be analysed by variance of the pixelwise 
orientation histogram. (See Fig. 4 and 5. Note that 
orientation information is shown in 256 bins.)

The necessary orientation information can be gained from 
spatial differential filtering. Eg. using classical filters as 
Prewitt or Sobel resulting Dv(x,y) vertical and Dh(x,y) 
horizontal filter responses, the necessary pixelwise value is 
θ(x,y) = arctan(Dv(x,y)/Dh(x,y)); or using directional filters as 
rotated Gauss derivative functions, we may choose θ(x,y) to 
be the angle in which filtering results in maximum. Note that 
this feature is also not bad for usual masses since they have a 
strong outline, giving significant orientation information in 
all directions.

Fig. 4 segmentation of a breast
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Fig. 5 orientation histogram of a spiculated mass segment 
and a segment of normal tissue respectively (see Fig. 4 also)

The aforementioned classical filters are almost unusable 
for our purposes since they result in noise for even the 
smallest flat parts of the image, and therefore flat orientation 
histogram – that should be characteristic for spiculated 
lesions. This problem can be solved by using better filters 
that gives no significant response for noisy images. Of 
course the more sophisticated methods we use for better 
performance, the more computation time is to be paid. 
However – in our case the results of EdgeFlow (and also 
results of filtering with Gauss derivatives) is already given, 
so it is only logical to try using them as a source of 
orientation information. The other advantage of using 
EdgeFlow is that orientation in a given pixel means “the 
direction in which the closest edge is to be found”, so 
EdgeFlow not only eliminates noisy data for pixels of flat 
segments but also replaces them by meaningful information.

Putting this EdgeFlow ALOE texture feature in our pairing 
system increased reduce of false positive hits from 23% to 
31% that means more than a 34% better result while still 
keeping 92% of true positive ones. (Note that the increase 
with Prewitt and Sobel operator was only a mere 1.5% and 
2% respectively.)

For the sake of comparison we also tried using orientation 
gained from pure Gauss derivatives. The maximum 
performance achieved stopped at 28% FP for 91% TP but 
for this the resolution of orientation had to be risen from 8 to 
32 – Gauss derivatives are rotated in 32 directions for 
filtering instead of only 8. This multiplies filtering times by 4 
but since additional steps of EdgeFlow also eat lots of time, 
this only means that the EdgeFlow based version is about 



20% faster than the best Gauss derivative based version –
that is still worse in performance. (Note that with pure Gauss 
using 8 orientations the maximum achievable performance 
stopped at 89% TP.)
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