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Abstract— Malignant breast tumors and benign masses ap-
pear in mammograms with different shape characteristics:
the former usually have rough, spiculated, or microlobulated
contours, whereas the latter commonly have smooth, round,
oval, or macrolobulated contours. Features that characterize
shape roughness and complexity can assist in distinguishing
between malignant tumors and benign masses. Signatures of
contours may be used to analyze their shapes. We propose to
use the turning angle function of contours of breast masses
to derive features that capture the characteristics of spicules
and shape roughness as described above. We propose methods
to derive an index of spiculation (SITA), index of convexity
(CITA) and a measure of fractal dimension (FDTA) from the
turning angle function. The methods were tested with a set of
111 contours of 65 benign masses and46 malignant tumors.
Classification accuracies of0.92, 0.93, and 0.91, in terms of the
area under the receiver operating characteristics curve, were
obtained with SITA, CITA, and FDTA, respectively.

I. ANALYSIS OF CONTOURS AND SIGNATURES

A. Shape analysis of breast tumors

Breast tumors and masses appear in mammograms with
different shape characteristics: malignant tumors usually
have rough, spiculated, or microlobulated contours, whereas
benign masses commonly have smooth, round, oval, or
macrolobulated contours [1], [2]. Measures that can quantita-
tively represent shape roughness and complexity can assist in
the classification of malignant tumors and benign masses [3],
[4]. Objective features of shape complexity, such as compact-
ness (C), fractional concavity (Fcc), spiculation index (SI),
a Fourier-descriptor-based factor (FF ), fractal dimension
(FD), moments, chord-length statistics, and wavelet trans-
form modulus-maxima have been developed to distinguish
benign masses from malignant tumors using pattern recog-
nition methods for computer-aided diagnosis (CAD) of breast
cancer [3], [4], [5], [6], [7], [8], [9], [10]. However, atypical
cases of macrolobulated or spiculated benign masses, as well
as microlobulated or well-circumscribed malignant tumors
create difficulties in pattern classification [3], [4]. Regardless,
in comparative analyses of several features of shape, edge-
sharpness, and texture for the classification of breast masses
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and tumors, shape factors such asFcc, FF , and SI have
been observed to lead to higher classification accuracies than
measures related to texture and density variation [7], [5].

Notwithstanding the relative success of measures of shape
in the classification of breast tumors and masses, obtaining
precise and artifact-free boundaries of masses from mam-
mograms remains to be a difficult problem [7], [11], [12].
Computer-detected contours may be expected to contain
inaccuracies and artifacts due to the limitations of the pro-
cedures for the detection and segmentation of masses in
mammograms. For these reasons, some studies on shape-
based discrimination of masses have been based on contours
of masses drawn manually on mammograms by radiologists
[3], [4], [5]. However, manually drawn contours may contain
noise related to hand tremor; they are also affected by intra-
observer and inter-observer variations. Sahiner et al. [7]
performed a comparative evaluation of the performance of
several shape and texture features using computer-detected
boundaries of masses: the shape factorFF was found to be
the most efficient feature for discriminating between benign
masses and malignant tumors.

B. Signatures of contours

Signatures of contours may be used to analyze their
shapes. The most commonly used method to transform a
two-dimensional (2D) contour into a one-dimensional (1D)
signature is in terms of the radial distance from each contour
point to the centroid of the contour, expressed as a function
of the index of the contour point. Given a contour withN
points {x(n), y(n)}, n = 1, 2, . . . , N , the signaturesd(n)
is defined assd(n) =

√
[x(n)− x̄]2 + [y(n)− ȳ]2. Here,

(x̄, ȳ) is the centroid of the contour, with the coordinates
given by the averages of the corresponding coordinates of
all of the contour points. A benign mass that is round or
macrolobulated will have a smooth signature [13]. On the
contrary, a malignant tumor that is spiculated or microlobu-
lated will have a rough and jagged signature [13]. The 1D
signature of a contour as above may be used to derive the
fractal dimension (FD) to represent the complexity of the
contour [8].

Another type of signaturesc(n) may be defined as
sc(n) = x(n) + j y(n). Fourier descriptors and normalized
shape factors to characterize roughness may be derived from
sc(n) [13], [3].

Pohlman et al. [14] defined the signature of a given contour
of a breast mass as the radial distance to the contour from
its centroid, expressed as a function of the angle of the
radial line in the interval [0◦, 360◦]. Such a function could



be multivalued for an irregular or spiculated contour. The
signature computed in this manner would also be undefined,
in certain ranges of the angle, for a contour for which the
centroid falls outside the region enclosed by the contour.

A major advantage with the use of 1D signatures is
the reduction in dimensionality from the corresponding 2D
contours. Signatures may be filtered or processed for the
reduction of noise and artifacts in the contour.

C. Fractal analysis

Fractal analysis may be used to study the complexity and
roughness of 1D functions, 2D contours, and images [15],
[16], [17], [18], [19], [20]. Fractal analysis may be applied
to classify breast masses based on the complexity of their
contours. Matsubara et al. [21] obtained100% accuracy in
the classification of13 breast masses usingFD. The method
required the computation of a series ofFD values for several
contours of a given mass obtained by thresholding the mass
at many levels; the variation inFD was used to categorize
a given mass as benign or malignant. Pohlman et al. [14]
obtained a classification accuracy of more than80% with
fractal analysis of signatures of contours of masses. Nguyen
and Rangayyan [8] estimated theFD of a set of111 contours
of breast masses and tumors using the ruler and the box-
counting methods applied to the 2D contours as well as their
1D signatures (sd(n) as described in Section I-B). The best
classification performance withAz = 0.89 was obtained with
the ruler method applied to the 1D signatures of the contours.

D. Turning angle function as a signature

The turning angle functionTs(s(n)) of a contours is
defined as the angle, measured in the counterclockwise
direction, of the tangent to the contour ats(n), with reference
to the x axis, expressed as a function of the contour index
n. The turning angle function is also known as the tangent
function [22], [23]. Fig. 1 and Fig. 2 show the turning
angle functions for the contours of a benign mass and a
malignant tumor, respectively. For a convex contour, such as
the case in Fig. 1, the turning angle function is, in general,
a monotonically increasing function (see Fig. 1 (b)). For a
contour with concave and convex portions, the turning angle
function begins to decrease at the beginning of a concave
portion, and keeps on decreasing until the direction of the
tangent to the contour changes at the beginning of the next
convex portion. In the turning angle function in Fig. 2, a
spicule in the contour is related to a portion bounded by a
pair of successive significant drops in the angle. The turning
angle function of a contour may be used as a signature to
represent its shape characteristics [22], [23].

The objective of this paper is to present the application of
turning angle functions for the analysis of contours of breast
masses. In particular, we present methods to derive an index
of spiculation to estimateFD, and to compute an index of
convexity from a given turning angle function. To evaluate
the performance of the proposed features in terms of the
efficiency in the classification of breast masses, we compare
the results with those provided bySI using the method of

Rangayyan et al. [4] andFD as obtained by Nguyen and
Rangayyan [8], in terms of the areaAz under the receiver
operating characteristics (ROC) curve.

II. DATA USED: CONTOURS OF BREAST MASSES

Mammograms of20 cases were obtained from Screen
Test: the Alberta Program for the Early Detection of Breast
Cancer [5], [24], [25]. The mammograms were digitized
using the Lumiscan85 scanner at a resolution of50 µm
with 12 b/ pixel. Fifty-seven regions of interest (ROIs), of
which 37 are related to benign masses and20 are related to
malignant tumors, were obtained [5].

Mammograms containing masses were also obtained from
the Mammographic Image Analysis Society (MIAS, UK)
database [26], [27] and the teaching library of the Foothills
Hospital (Calgary) [4], [3]. The MIAS images were digitized
at a resolution of50 µm. The Foothills Hospital images were
digitized at 62 µm per pixel. This set includes28 benign
masses and26 malignant tumors.

Contours of the masses in the images described above
were drawn by an expert radiologist specialized in mam-
mography. The dataset used in the present study includes
111 contours, with typical and atypical shapes of65 benign
masses and46 malignant tumors. The diagnostic classifica-
tion was based upon biopsy. (The present work employs the
same dataset as that used by Nguyen and Rangayyan [8]).

III. METHODS: THE TURNING ANGLE FUNCTION

The turning angle function of a given contour was obtained
as described in Section I-D. Fig. 1(b) and Fig. 2(b) illustrate
the turning angle functions of the contours of a benign
mass and a malignant tumor, respectively. It is readily seen
that while the former is a nearly monotonically increasing
function, the latter has many decreasing and increasing
segments related to the spicules present in the contour of the
tumor. The examples indicate that the turning angle function
may be used to represent the complexity as well as the
variations present in the shapes of breast masses and tumors.

A. Index of spiculation from the turning angle function

In order to derive an index of spiculation (or lobulation)
from a turning angle function (referred to asSITA), the
length of each possible spicule is multiplied by(1 + cos ψ),
whereψ is the angle of the spicule (as obtained from the
turning angle function). The weighted lengths of the spicules
are summed, and normalized by twice the sum of their
unweighed lengths.

B. Fractal dimension of the turning angle function

Nguyen and Rangayyan [8] obtained the best performance
in the classification of breast masses and tumors by the
application of the ruler method to 1D signatures (sd(n) as
described in Section I-B) of breast masses, as compared to
the box-counting method applied to the 2D contours or their
1D signatures, as well as the ruler method applied to the 2D
contours. In the present work, the ruler method was applied
to the 1D turning angle functions of the contours of the breast
masses (referred to asFDTA).
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Fig. 1. (a) A benign mass with a relatively smooth and convex contour.
(b) Turning angle function of the contour.

C. Index of convexity from the turning angle function

Hand-drawn contours, such as those shown in Fig. 1(a) and
Fig. 2(a), could contain artifacts and noise related to hand
tremor and other limitations. As a consequence, the turning
angle function could be expected to contain several small
segments that are insignificant in the representation of the
contours for further analysis. For this reason, it is necessary
to filter the turning angle function in a selective manner, so
as to remove the artifacts and noise while preserving the
significant details, as shown in Figure 3.

To obtain the index of convexityCITA, the filtered
turning angle function is smoothed to remove irrelevant
information. The smoothed function is obtained by replacing
each monotonically increasing or decreasing section of the
filtered turning function by a representative segment and
its corresponding turning angle. The new segment length is
obtained by summing all related individual segment lengths
in the increasing or decreasing section, and the new turning
angle is obtained by computing the average of the relative
turning angles of the corresponding segments. The results of
the smooth turning angle function are shown in Fig. 4. Note
that the smoothed turning angle function of a convex contour
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Fig. 2. (a) A malignant tumor with a spiculated contour including concave
segments. (b) Turning angle function of the contour.

is a constant function, as illustrated in Figure 4(a); on the
other hand, the filtered and smoothed turning function of a
contour with concavities has several variations as shown in
Fig. 4(b). The index of concavityICTA based on the turning
angle function is defined as:

ICTA = 1−
(

α + β

4S

)
(1)

where α represents the presence of convex regions in the
contour,β represents the presence of concave regions in the
contour, andS is the sum of all segments of the smoothed
turning angle function.

The termsα andβ are obtained as follows:

α =
N∑

i=1

( (1 + cos(θ(i))) Sa(i)) (2)

where Sa(i) is the sum of the lengths of two adjacent
segments joined by the drop in angleθ(i) obtained from
the smoothed turning angle function (see Figure 5; for the



illustration shown,Sa(i) = (L1+L2)), andN is the number
of drops in angles.

β =
M∑

j=1

( (1 + cos(φ(j)) Sb(j)) (3)

where Sb(i) is the sum of the lengths of two adjacent
segments joined by an increasing angleφ(i) obtained from
the smoothed turning angle function (see Figure 5; for the
case illustrated,Sb(j) = (L2 + L3)), andM is the number
of steps with increasing angles.
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Fig. 3. Filtered turning function with artifacts and noise eliminated,
corresponding to: (a) the turning angle function in Figure 1(b); (b) the
turning angle function in Figure 2(b).

D. Pattern classification experiments

The conditional probability density functions of feature
vectors derived from the proposed methods, assumed to
be Gaussian, were estimated for the two classes of benign
masses and malignant tumors. Using Bayes formula, a dis-
criminant function was composed, and the leave-one-out
method was used in estimating the classification accuracy
[28]. A sliding threshold was applied to classify the feature
vectors, and receiver operating characteristics (ROC) curves
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Fig. 4. Smoothed turning angle functions: (a) of the benign mass with
convex contour shown in Figure 1; (b) of the malignant tumor with
spiculated contour shown in Figure 2.

Fig. 5. Relation between a drop and an increase in the turning angle and
their adjacent segments.



TABLE I

CLASSIFICATION PERFORMANCE OF VARIOUS SHAPE FEATURES.

Feature Az

SI of Rangayyan et al. [4] 0.90

FD of Nguyen and Rangayyan [8] 0.89

SI andFD 0.91

SITA 0.92

CITA 0.93

FDTA 0.91

SITA andFDTA 0.91

[29] were generated. The areaAz under each ROC curve
was computed to serve as a measure of the classification
performance of the corresponding feature vector.

IV. RESULTS AND DISCUSSION

The methods were tested with a set of111 contours of
breast masses; see Section II for details regarding the data
used. The featuresSITA, CITA andFDTA obtained using
the methods described in Section III were evaluated in terms
of the areaAz under the ROC curve. Table I provides the
values ofAz obtained for some of the feature combinations
tested. The results provided by the spiculation indexSI
obtained using the method of Rangayyan et al. [4], as well
as byFD using the ruler method applied to 1D signatures
of contours by Nguyen and Rangayyan [8] are also shown
in the table. It is seen that the shape features proposed in
this paper provide, the best results.

V. CONCLUSION

We have proposed methods to obtain shape features from
the turning angle functions of contours. The features are
useful in the analysis of contours of breast masses and tumors
because of their ability to capture diagnostically important
details of shape related to spicules and lobulations. The pro-
posed features have provided high classification accuracies in
discriminating between benign breast masses and malignant
tumors. The methods should be useful in computer-aided
diagnosis of breast cancer.
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