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Abstract 

Dyssynchronous myocardial contraction can be 

treated with surgical implant of a pacing device. 

Integrated information of coronary anatomy and 

mechanical delay may be extremely beneficial to success 

of the implant but it is not available in current cardiac 

imaging modalities. The objective of this study is to 

investigate the feasibility of a point-merge co-registration 

approach to overcome the limitation. 

This study shows that our method is a reliable and fast 

tool useful not only to attain optimal left ventricular 

implantation site but also to better select patients that 

undergo cardiac resynchronization therapy. 

1. Introduction 

Dyssynchronous myocardial contraction is a chronic 

condition of the heart that is a predictor of adverse 

cardiac events and is associated with a poor prognosis. 

The condition, which includes patients with both 

dyssynchronous interventricular activation (a 

pathological delay between the activation of the left and 

right ventricles) and dyssynchronous intraventricular 

activation (the pathological delay between different 

segments of the myocardium), can be treated with 

surgical implant of a bi-ventricular pacing device  

In fact, resynchronization can be achieved using a special 

pacing device with an additional lead intravenously 

implanted through the coronary sinus in order to 

stimulate the lateral wall of the left ventricle via the 

lateral or posterolateral branch of coronary venous tree. 

Unfortunately, a large segment of this patient population 

(> 30%) are non-responders to therapy and factors that 

positively predict successful outcome of the surgical 

therapy have not been fully recognized. Lead position 

however is believed to be one of the critical factors in 

determining success of therapy which in-turn is 

dependant upon technically placing the left ventricular 

lead, the variability of the coronary venous anatomy and 

the location of left ventricular mechanical dyssynchrony. 

Even though the coronary vein anatomy can be 

determined by multi-slice computed tomography and 

visual information regarding location of mechanical 

dyssynchrony can be obtained from ultrasound based 

tissue synchronization imaging, one of the current 

limiting factors is the lack of an imaging modality that 

has both spatial and temporal resolution sufficient to 

capture and integrate the variability of the coronary 

venous anatomy together with characteristics of the 

myocardial dyssynchrony. The objective of this study 

was to investigate the feasibility of a point merge co-

registration approach to overcome this limitation by 

fusing tissue synchronization images with computed 

tomography and to provide a novel tool useful not only to 

better identify responders to resynchronization therapy 

but also to attain the optimal left ventricular lead 

implantation site.  

 

2. Methods 

The population examined in this study consisted of 5 

patients with significant myocardial dyssynchrony. Data 

from these subjects were acquired using both MSCT 

(Philips Brilliance CT-64) and Tissue Synchronization 

Imaging (GE Vivid 7). 

 

2.1. Multi-slice computed tomography  

A 40-row or 64-row MSCT scanner (Philips Medical 

Systems) was used to acquire each volume data set of the 

chest, covering a volume that included the heart and the 

coronary sinus with the coronary veins. Patients were 

asked to hold their breath and a contrast acquisition was 

performed. Cross-sectional images were reconstructed 

with a slice thickness of 0.6 or 0.4 mm using an ECG-

gated multi-slice reconstruction algorithm to obtain a 

temporal resolution of 100-150 ms. An experienced 

reviewer analyzed the data sets, using the original trans-
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axial images along with multi-planar reconstructions and 

maximum intensity projection images obtained with the 

use of commercially available software (Philips Extended 

Brilliance Workstation). 

The reviewer pinpointed the location of the coronary 

sinus and several points on the lateral and posterolateral 

branches of the coronary venous tree. An automated 

segmentation algorithm automatically determined the 

coronary venous anatomy and saved its geometry in x,y,z 

coordinate space for later processing. 

2.2. Tissue synchronization imaging 

Tissue Synchronization Imaging (TSI) is a cardiac 

imaging modality based on ultrasound that is very 

effective for visual assessment of left ventricular 

mechanical dyssynchrony. During a standard color Tissue 

Doppler echocardiographic acquisition, a signal-

processing algorithm processes Tissue Doppler data to 

automatically detect peak positive longitudinal 

myocardial velocities and record the time from the QRS 

as they occur. Each region in the standard grayscale 

echocardiogram is then color-coded based on the time to 

peak velocities using shades of green for regions with 

normal timing, shades of yellow-orange for moderate 

delay and red for severe delays in peak longitudinal 

myocardial velocity delays.  

In this study, Tissue Synchronization Imaging was 

obtained on the same day as the MSCT acquisition from 

both standard transthoracic 3 and 4-chamber apical 

views. 

. 

2.3.  Co-registration 

Using custom-made software experienced operators 

pinpointed the location of pairs of corresponding points 

in each dataset. These corresponding points were fiducial 

to the co-registration algorithm and in order to guarantee 

increased accuracy and reproducibility; the middle of the 

mitral valve, the middle of the aortic valve and the left 

ventricular apex were used from the 3-chamber view; the 

middle of the mitral valve, the middle of the tricuspid 

valve and the apex were used from the 4-chamber view.  

This data was used to numerically derive an optimal 

3D transformation to fuse each image data sample MSCT 

and TSI into a co-registered x,y,z coordinate system. 

2.3.1. Homogeneous transformations 

 In this co-registration algorithm, the basic 

transformation from one coordinate system to the co-

registered x,y,z coordinate system has the form of a 4x4 

matrix and we used an homogenous system to transform 

a vector A in original coordinate system  into Vector B in 

the fused coordinate system. The transformation is 

performed using a two-step process that involves a matrix 

multiplication and the homogenization of the resulting 

vector.  

Let  
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where M represents the generic transformation and A 

the generic homogeneous vector 
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The vector B’ is thus obtained by matrix multiplication 

of M by A. All components of the resulting vector are 

divided by its fourth component to render the final vector 

B a homogenous vector.  

The matrix M can handle basic operations such as 

rotation around the x axis 
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rotation around the y axis 
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rotation around the z axis 
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where g is the rotation angle; as well as 

 

translation  
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, where Tx,Ty,Tz are the x,y,z 

components of the translation vector and 

scaling 
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, where Sx,Sy,Sz indicate the 

amount of axial scaling, but can also be easily 

manipulated to store complex transformations equivalent 
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to the application of several intermediate operations. The 

latter approach was exploited in our implementation in 

order to efficiently apply an optimal complex 

transformation with only one matrix multiplication and 

one scalar multiplication. 

2.3.2. Optimal transformation 

During the co-registration process, our method 

implemented a modified version of the Shor’s r-algorithm 

to iteratively search along the descendent gradient the 

optimal transformation that minimizes the sum of 

distances between the fiducial points in one modality cP ,2  

and the transformed fiducial marks cP ,1 in the other 

modality to be registered. 

The minimization of the error function 

∑
=

−=

n

c

cc PTPErr
1

,1,2 c  is subject to constraints that 

allow discard of unwanted solutions such as, for example, 

the “flatten” transformation.  

Once obtained, an optimal transformation is applied to 

the entire dataset in real time. Our implementation 

utilizes the Graphics Unit Processor to handle the 

transformation in hardware and therefore requires no 

storage of additional data besides the mathematical 

details of the optimization model used. 

An experienced operator reviewed the results of the 

co-registration and made sure that anatomical detail such 

as the endocardial border and cardiac valves shown in the 

fused image were consistent across modalities. In the 

final stage, the coronary venous anatomy determined 

from MSCT was co-registered and visualized fused in 3D 

space with TSI. 

3. Results 

In all cases the co-registration process was user-friendly, 

accurate and the duration of the process was less than 5 

minutes per case.  

  

Figure 1 Two cross-sections from the fused CT and TSI 

rendered in 3D space intersect at apical level (left) and 

mid-level (right) show consistent endocardial borders, 

apical and valve locations across modalities. 

With a point-merge approach our method was able to 

use a minimal number of three-pairs of markers to 

accurately co-register the MSCT, the reconstructed 

coronary venous anatomy and the TSI. 

It enabled not only easy visual determination of the 

closest coronary vein to the myocardial region with 

dyssynchrony, but also quantitative assessment with the 

measurement of the linear distance in 3D space between 

the targeted left ventricular lead position and the site of 

latest activation. Last but not least, the method enabled 

measurement of curvilinear distances and thus accurate 

assessment of the catheter advancement that was 

necessary to reach the targeted left ventricular lead 

position during the implantation. 

 

Figure 2. Two different 3D views of the segmented 

coronary anatomy from Computer Tomography co-

registered with the Doppler TSI echocardiographic 

depiction of the apical 3-chamber view of the left 

ventricle. This patient was found to have dyssynchrony 

involving the basal posterior wall (yellow) along with a 

posterolateral vein (pointed by white arrow) subtending 

that segment. This image allowed the cardiologist to 

direct the pacemaker lead to this posterolateral vein in 

hopes of achieving the optimal clinical result specifically 

improving ventricular function and ultimately 

symptomatology. 

4. Discussion and conclusions 

Despite the attention of many scientists on pacing and 

cardiac resynchronization therapy drawn by both the 

severity of the cardiac events associated with 

myocardiacal dyssynchrony and the high frequency of 

non-responders to therapy, the prognosis of myocardial 

dyssynchorny is still challenging to predict. 

The variability of coronary venous anatomy as 

determined by MSCT confirmed that it is not possible to 

predict apriori the exact spatial relationship between the 

left ventricular lead position attained using an empirically 

selected lateral or posterolateral branch to the myocardial 

segment with dyssynchrony and suggests that only the 

integrated information of coronary venous anatomy and 

the site of latest activation could be an enabling factor in 
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predicting and attaining the optimal LV lead position.  

Our study shows that the co-registration of coronary 

vein MSCT and TSI is feasible using a point-merge 

approach that is reliable, accurate and fast. Our proposed 

method might greatly benefit implant success in cardiac 

resynchronization therapy by providing a novel tool with 

integrated information not currently available in cardiac 

imaging modalities that is useful to enable positioning a 

pacing lead to the optimal implantation site. In fact, the 

newly available quantitative assessment of the linear 

distance between the site of latest activation from the 

lateral and posterolateral branch would help with 

implantation planning by selecting the branch which 

meets both minimal diameter requirements as well as 

optimal location relative to the site of ventricular 

dyssynchrony. The measurement of curvilinear length of 

the path that the catheter would traverse in the coronary 

vein enables the assessment distance of catheter 

advancement necessary during the implantation to reach 

the optimal implantation site. 

Additionally our method can be used to better select 

patients that undergo intravenous cardiac 

resynchronization therapy by including only those 

patients whose coronary venous anatomy is suitable and 

allows getting sufficiently close to the myocardial region 

with dyssynchrony. 

Although very promising, the results of this study are 

limited as we did not assess impact on device implant 

success and clinical outcome of patients with moderate 

heart failure and myocardial dyssynchrony.  Further study 

is needed to demonstrate effectiveness of this approach. 
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